The Projected Newton Iteration Approach for Computing the Nonnegative Z-Eigenpairs of Nonnegative Tensors

The Projected Newton Iteration Approach for Computing the Nonnegative Z-Eigenpairs of Nonnegative Tensors

Year:    2021

Author:    Peihuan Bi, Wen Li, Dongdong Liu, Mingqing Xiao

CSIAM Transactions on Applied Mathematics, Vol. 2 (2021), Iss. 2 : pp. 376–394

Abstract

In this paper, we propose a new projected Newton iteration for computing the nonnegative Z-eigenpairs of nonnegative tensors. We show that the required iteration has a local quadratic convergence. More specially, the formulation aims to solve the tensor equation arising from the multilinear PageRank problem. Numerical experiments are provided to illustrate the effectiveness and superiority of the proposed approach.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/csiam-am.2021.nla.07

CSIAM Transactions on Applied Mathematics, Vol. 2 (2021), Iss. 2 : pp. 376–394

Published online:    2021-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    19

Keywords:    Nonnegative tensor nonnegative Z-eigenpair local quadratic convergence multilinear PageRank.

Author Details

Peihuan Bi

Wen Li

Dongdong Liu

Mingqing Xiao

  1. A new modified Newton iteration for computing nonnegative Z-eigenpairs of nonnegative tensors

    Guo, Chun-Hua | Lin, Wen-Wei | Liu, Ching-Sung

    Applied Mathematics Letters, Vol. 136 (2023), Iss. P.108454

    https://doi.org/10.1016/j.aml.2022.108454 [Citations: 0]
  2. Anderson accelerated fixed‐point iteration for multilinear PageRank

    Lai, Fuqi | Li, Wen | Peng, Xiaofei | Chen, Yannan

    Numerical Linear Algebra with Applications, Vol. 30 (2023), Iss. 5

    https://doi.org/10.1002/nla.2499 [Citations: 4]