Year: 2021
Author: Yu-Hong Dai, Liwei Zhang
CSIAM Transactions on Applied Mathematics, Vol. 2 (2021), Iss. 3 : pp. 551–584
Abstract
Study about theory and algorithms for nonlinear programming usually assumes that the feasible region of the problem is nonempty. However, there are many important practical nonlinear programming problems whose feasible regions are not known to be nonempty or not, and optimizers of the objective function with the least constraint violation prefer to be found. A natural way for dealing with these problems is to extend the nonlinear programming problem as the one optimizing the objective function over the set of points with the least constraint violation. Firstly, the minimization problem with least constraint violation is proved to be a Lipschitz equality constrained optimization problem when the original problem is a convex nonlinear programming problem with possible inconsistent constraints, and it can be reformulated as an MPCC problem; And the minimization problem with least constraint violation is relaxed to an MPCC problem when the original problem is a nonlinear programming problem with possible inconsistent non-convex constraints. Secondly, for nonlinear programming problems with possible inconsistent constraints, it is proved that a local minimizer of the MPCC problem is an M-stationary point and an elegant necessary optimality condition, named as L-stationary condition, is established from the classical optimality theory of Lipschitz continuous optimization. Thirdly, properties of the penalty method for the minimization problem with the least constraint violation are developed and the proximal gradient method for the penalized problem is studied. Finally, the smoothing Fischer-Burmeister function method is constructed for solving the MPCC problem related to minimizing the objective function with the least constraint violation. It is demonstrated that, when the positive smoothing parameter approaches to zero, any point in the outer limit of the KKT-point mapping is an L-stationary point of the equivalent MPCC problem.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/csiam-am.2020-0043
CSIAM Transactions on Applied Mathematics, Vol. 2 (2021), Iss. 3 : pp. 551–584
Published online: 2021-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 34
Keywords: Nonlinear programming least constraint violation L-stationary point MPCC smoothing function.
Author Details
-
Optimization problems and methods for resource allocation in wireless communications
Ya-Feng, Liu | Zheyu, Wu | Wei-Kun, Chen | Yu-Hong, DaiSCIENTIA SINICA Mathematica, Vol. 53 (2023), Iss. 5 P.667
https://doi.org/10.1360/SSM-2021-0188 [Citations: 0] -
Multiobjective optimization with least constraint violation: optimality conditions and exact penalization
Chen, Jiawei | Dai, Yu-HongJournal of Global Optimization, Vol. 87 (2023), Iss. 2-4 P.807
https://doi.org/10.1007/s10898-022-01158-8 [Citations: 5] -
Nonlinear Convex Optimization with Least Constraint Violation
路, 斯文
Advances in Applied Mathematics, Vol. 13 (2024), Iss. 09 P.4119
https://doi.org/10.12677/aam.2024.139393 [Citations: 0] -
Multi-Label Adversarial Attack With New Measures and Self-Paced Constraint Weighting
Su, Fengguang | Wu, Ou | Zhu, WeiyaoIEEE Transactions on Image Processing, Vol. 33 (2024), Iss. P.3809
https://doi.org/10.1109/TIP.2024.3411927 [Citations: 0] -
The augmented Lagrangian method can approximately solve convex optimization with least constraint violation
Dai, Yu-Hong | Zhang, LiweiMathematical Programming, Vol. 200 (2023), Iss. 2 P.633
https://doi.org/10.1007/s10107-022-01843-2 [Citations: 2]