Dispersion-Managed Lump Waves in a Spatial Symmetric KP Model

Dispersion-Managed Lump Waves in a Spatial Symmetric KP Model

Year:    2023

Author:    Wen-Xiu Ma, Sumayah Batwa, Solomon Manukure

East Asian Journal on Applied Mathematics, Vol. 13 (2023), Iss. 2 : pp. 246–256

Abstract

This paper aims to explore dispersion-managed lump waves in a spatial symmetric KP model. Negative second-order linear dispersive terms play an important role in creating lump waves with the nonlinearity in the model. The starting point is a Hirota bilinear form with an ansatz on quadratic function solutions to the corresponding Hirota bilinear equation. Symbolic computation with Maple is conducted to determine lump waves, and characteristic behaviors are analyzed for the resulting lump wave solutions.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/eajam.2022-038.180922

East Asian Journal on Applied Mathematics, Vol. 13 (2023), Iss. 2 : pp. 246–256

Published online:    2023-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:    Soliton lump wave Hirota bilinear derivative symbolic computation dispersion.

Author Details

Wen-Xiu Ma

Sumayah Batwa

Solomon Manukure

  1. New coherent structures and interaction behavior for the new (2+1)-dimensional Korteweg-de Vries equation

    Li, Zitian

    Chaos, Solitons & Fractals, Vol. 184 (2024), Iss. P.115007

    https://doi.org/10.1016/j.chaos.2024.115007 [Citations: 0]
  2. Dynamical behaviors of various multi-solutions to the (2+1)-dimensional Ito equation

    Wang, Xiaomin | Bilige, Sudao

    Journal of Mathematical Analysis and Applications, Vol. 538 (2024), Iss. 2 P.128423

    https://doi.org/10.1016/j.jmaa.2024.128423 [Citations: 0]
  3. Novel exact solutions to the $$(3 + 1)$$-dimensional B-type Kadomtsev–Petviashvili–Boussinesq equation by using BNNM

    Ma, Wenbo | Sudao, Bilige

    Indian Journal of Physics, Vol. 98 (2024), Iss. 4 P.1425

    https://doi.org/10.1007/s12648-023-02900-y [Citations: 5]
  4. Lump waves and their dynamics of a spatial symmetric generalized KP model

    MA, WEN-XIU

    Romanian Reports in Physics, Vol. 76 (2024), Iss. 2 P.108

    https://doi.org/10.59277/RomRepPhys.2024.76.108 [Citations: 0]
  5. General Solution to a Nonlocal Linear Differential Equation of First-Order

    Ma, Wen-Xiu

    Qualitative Theory of Dynamical Systems, Vol. 23 (2024), Iss. 4

    https://doi.org/10.1007/s12346-024-01036-6 [Citations: 4]
  6. Lump and interaction solutions to a (3+1)-dimensional BKP-Boussinesq-like equation

    Yang, Xiyan | Tang, Liangping | Gu, Xinyi | Chen, Wenxia | Tian, Lixin

    Journal of Mathematical Analysis and Applications, Vol. 543 (2025), Iss. 2 P.129030

    https://doi.org/10.1016/j.jmaa.2024.129030 [Citations: 0]
  7. Analyzing Soliton Solutions of the Extended (3 + 1)-Dimensional Sakovich Equation

    Alqahtani, Rubayyi T. | Kaplan, Melike

    Mathematics, Vol. 12 (2024), Iss. 5 P.720

    https://doi.org/10.3390/math12050720 [Citations: 1]
  8. New lump solutions of the (3+1)-dimensional generalized Camassa–Holm Kadomtsev–Petviashvili (gCH-KP) equation

    He, Bin

    Results in Physics, Vol. 61 (2024), Iss. P.107696

    https://doi.org/10.1016/j.rinp.2024.107696 [Citations: 0]
  9. Lump Waves in a Spatial Symmetric Nonlinear Dispersive Wave Model in (2+1)-Dimensions

    Ma, Wen-Xiu

    Mathematics, Vol. 11 (2023), Iss. 22 P.4664

    https://doi.org/10.3390/math11224664 [Citations: 22]
  10. Dynamical system approach and $$exp(-\Phi (\zeta ))$$ Expansion method for optical solitons in the complex nonlinear Fokas–Lenells model of optical fiber

    Elsadany, A. A. | Alshammari, Fahad Sameer | Elboree, Mohammed K.

    Optical and Quantum Electronics, Vol. 56 (2024), Iss. 5

    https://doi.org/10.1007/s11082-024-06523-3 [Citations: 0]
  11. Resonant multi-wave, positive multi-complexiton, nonclassical Lie symmetries, and conservation laws to a generalized Hirota bilinear equation

    Hosseini, K. | Alizadeh, F. | Hinçal, E. | Baleanu, D. | Osman, M. S. | Wazwaz, A. M.

    Modern Physics Letters B, Vol. (2024), Iss.

    https://doi.org/10.1142/S0217984925500320 [Citations: 2]