Regularized Numerical Methods for the Nonlinear Schrödinger Equation with Singular Nonlinearity

Regularized Numerical Methods for the Nonlinear Schrödinger Equation with Singular Nonlinearity

Year:    2023

Author:    Weizhu Bao, Yue Feng, Ying Ma

East Asian Journal on Applied Mathematics, Vol. 13 (2023), Iss. 3 : pp. 646–670

Abstract

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/eajam.2022-295.300123

East Asian Journal on Applied Mathematics, Vol. 13 (2023), Iss. 3 : pp. 646–670

Published online:    2023-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    25

Keywords:    Nonlinear Schrödinger equation singular nonlinearity local energy regularization global nonlinearity regularization convergence rate Lie-Trotter time-splitting Lawson-type exponential integrator.

Author Details

Weizhu Bao

Yue Feng

Ying Ma

  1. Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity

    Bao, Weizhu | Wang, Chushan

    Mathematics of Computation, Vol. 93 (2023), Iss. 348 P.1599

    https://doi.org/10.1090/mcom/3900 [Citations: 4]
  2. Optimal Error Bounds on the Exponential Wave Integrator for the Nonlinear Schrödinger Equation with Low Regularity Potential and Nonlinearity

    Bao, Weizhu | Wang, Chushan

    SIAM Journal on Numerical Analysis, Vol. 62 (2024), Iss. 1 P.93

    https://doi.org/10.1137/23M155414X [Citations: 4]
  3. An Explicit and Symmetric Exponential Wave Integrator for the Nonlinear Schrödinger Equation with Low Regularity Potential and Nonlinearity

    Bao, Weizhu | Wang, Chushan

    SIAM Journal on Numerical Analysis, Vol. 62 (2024), Iss. 4 P.1901

    https://doi.org/10.1137/23M1615656 [Citations: 0]