Boundedness in a Forager-Exploiter Model Accounting for Gradient-Dependent Flux-Limitation

Boundedness in a Forager-Exploiter Model Accounting for Gradient-Dependent Flux-Limitation

Year:    2022

Author:    Qian Zhao, Bin Liu

East Asian Journal on Applied Mathematics, Vol. 12 (2022), Iss. 4 : pp. 848–873

Abstract

The forager-exploiter model with gradient-dependent flux-limitation $$u_t=\Delta u-\chi\nabla \cdot (uk_f(1+|\nabla w|^2)^{-\frac{\alpha}{2}})\nabla w,$$$$v_t=\Delta v-\xi\nabla \cdot (vk_g(1+|\nabla u|^2)^{-\frac{\beta}{2}})\nabla u,$$$$w_t=\Delta w-(u+v)w-\mu w+r(x,t)$$is considered in smooth bounded domains $Ω ⊂ \mathbb{R}^N,$ $N ≥ 2.$ It is shown that if $α > (N − 2)/N(N − 1),$ $β > 0,$ then for any nonnegative functions $u_0,$ $v_0,$ $w_0∈ W^{2,∞}(Ω)$ such that $u_0 \not\equiv 0$ and $v_0 \not\equiv 0,$ the problem has a global classical solution $(u, v, w) ∈ (C^0 (\overline{Ω} × [0,∞))\cap C^{2,1}(\overline{Ω} × (0,∞)))^3$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/eajam.291021.140222

East Asian Journal on Applied Mathematics, Vol. 12 (2022), Iss. 4 : pp. 848–873

Published online:    2022-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    26

Keywords:    Chemotaxis forager-exploiter model boundedness flux-limitation.

Author Details

Qian Zhao

Bin Liu