A New $C$-Eigenvalue Localisation Set for Piezoelectric-Type Tensors

A New $C$-Eigenvalue Localisation Set for Piezoelectric-Type Tensors

Year:    2020

Author:    Liang Xiong, Jianzhou Liu

East Asian Journal on Applied Mathematics, Vol. 10 (2020), Iss. 1 : pp. 123–134

Abstract

A new inclusion set for localisation of the $C$-eigenvalues of piezoelectric tensors is established. Numerical experiments show that it is better or comparable to the methods known in literature.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/eajam.060119.040619

East Asian Journal on Applied Mathematics, Vol. 10 (2020), Iss. 1 : pp. 123–134

Published online:    2020-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:    C-eigenvalue C-eigenvector piezoelectric tensor C-eigenvalue localisation theorem.

Author Details

Liang Xiong

Jianzhou Liu

  1. Localization and calculation for C-eigenvalues of a piezoelectric-type tensor

    Bai, Shunjie | Sang, Caili | Zhao, Jianxing

    Electronic Research Archive, Vol. 30 (2022), Iss. 4 P.1419

    https://doi.org/10.3934/era.2022074 [Citations: 0]
  2. Properties and calculation for <i>C</i>-eigenvalues of a piezoelectric-type tensor

    Zhao, Jianxing | Luo, Jincheng

    Journal of Industrial and Management Optimization, Vol. 18 (2022), Iss. 6 P.4351

    https://doi.org/10.3934/jimo.2021162 [Citations: 3]
  3. Shifted power method for computing the largest C-eigenvalue of a piezoelectric-type tensor

    Zhao, Jianxing | Liu, Pin | Sang, Caili

    Applied Mathematics Letters, Vol. 140 (2023), Iss. P.108593

    https://doi.org/10.1016/j.aml.2023.108593 [Citations: 0]
  4. A Tighter C-Eigenvalue Interval for Piezoelectric-Type Tensors

    Sang, Caili

    Bulletin of the Iranian Mathematical Society, Vol. 48 (2022), Iss. 5 P.2255

    https://doi.org/10.1007/s41980-021-00645-0 [Citations: 0]
  5. Further Study on C-Eigenvalue Inclusion Intervals for Piezoelectric Tensors

    Wang, Gang | Yang, Xiaoxuan | Shao, Wei | Hou, Qiuling

    Axioms, Vol. 11 (2022), Iss. 6 P.250

    https://doi.org/10.3390/axioms11060250 [Citations: 1]
  6. Computing the Largest C-Eigenvalue of a Tensor Using Convex Relaxation

    Yang, Yuning | Liang, Chang

    Journal of Optimization Theory and Applications, Vol. 192 (2022), Iss. 2 P.648

    https://doi.org/10.1007/s10957-021-01983-z [Citations: 4]
  7. Z-eigenvalue inclusion theorem of tensors and the geometric measure of entanglement of multipartite pure states

    Xiong, Liang | Liu, Jianzhou

    Computational and Applied Mathematics, Vol. 39 (2020), Iss. 2

    https://doi.org/10.1007/s40314-020-01166-y [Citations: 9]
  8. Calculating C-eigenpairs of piezoelectric-type tensors via a Z-eigenpair method

    Liu, Xifu | Mo, Changxin

    Applied Mathematics and Computation, Vol. 426 (2022), Iss. P.127124

    https://doi.org/10.1016/j.amc.2022.127124 [Citations: 2]
  9. Shifted eigenvalue decomposition method for computing C-eigenvalues of a piezoelectric-type tensor

    Liang, Chang | Yang, Yuning

    Computational and Applied Mathematics, Vol. 40 (2021), Iss. 7

    https://doi.org/10.1007/s40314-021-01636-x [Citations: 7]