Year: 2020
Author: Liang Xiong, Jianzhou Liu
East Asian Journal on Applied Mathematics, Vol. 10 (2020), Iss. 1 : pp. 123–134
Abstract
A new inclusion set for localisation of the $C$-eigenvalues of piezoelectric tensors is established. Numerical experiments show that it is better or comparable to the methods known in literature.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/eajam.060119.040619
East Asian Journal on Applied Mathematics, Vol. 10 (2020), Iss. 1 : pp. 123–134
Published online: 2020-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 12
Keywords: C-eigenvalue C-eigenvector piezoelectric tensor C-eigenvalue localisation theorem.
Author Details
-
Localization and calculation for C-eigenvalues of a piezoelectric-type tensor
Bai, Shunjie | Sang, Caili | Zhao, JianxingElectronic Research Archive, Vol. 30 (2022), Iss. 4 P.1419
https://doi.org/10.3934/era.2022074 [Citations: 0] -
Properties and calculation for <i>C</i>-eigenvalues of a piezoelectric-type tensor
Zhao, Jianxing | Luo, JinchengJournal of Industrial and Management Optimization, Vol. 18 (2022), Iss. 6 P.4351
https://doi.org/10.3934/jimo.2021162 [Citations: 3] -
Shifted power method for computing the largest C-eigenvalue of a piezoelectric-type tensor
Zhao, Jianxing | Liu, Pin | Sang, CailiApplied Mathematics Letters, Vol. 140 (2023), Iss. P.108593
https://doi.org/10.1016/j.aml.2023.108593 [Citations: 0] -
A Tighter C-Eigenvalue Interval for Piezoelectric-Type Tensors
Sang, Caili
Bulletin of the Iranian Mathematical Society, Vol. 48 (2022), Iss. 5 P.2255
https://doi.org/10.1007/s41980-021-00645-0 [Citations: 0] -
Further Study on C-Eigenvalue Inclusion Intervals for Piezoelectric Tensors
Wang, Gang | Yang, Xiaoxuan | Shao, Wei | Hou, QiulingAxioms, Vol. 11 (2022), Iss. 6 P.250
https://doi.org/10.3390/axioms11060250 [Citations: 1] -
Computing the Largest C-Eigenvalue of a Tensor Using Convex Relaxation
Yang, Yuning | Liang, ChangJournal of Optimization Theory and Applications, Vol. 192 (2022), Iss. 2 P.648
https://doi.org/10.1007/s10957-021-01983-z [Citations: 4] -
Z-eigenvalue inclusion theorem of tensors and the geometric measure of entanglement of multipartite pure states
Xiong, Liang | Liu, JianzhouComputational and Applied Mathematics, Vol. 39 (2020), Iss. 2
https://doi.org/10.1007/s40314-020-01166-y [Citations: 9] -
Calculating C-eigenpairs of piezoelectric-type tensors via a Z-eigenpair method
Liu, Xifu | Mo, ChangxinApplied Mathematics and Computation, Vol. 426 (2022), Iss. P.127124
https://doi.org/10.1016/j.amc.2022.127124 [Citations: 2] -
Shifted eigenvalue decomposition method for computing C-eigenvalues of a piezoelectric-type tensor
Liang, Chang | Yang, YuningComputational and Applied Mathematics, Vol. 40 (2021), Iss. 7
https://doi.org/10.1007/s40314-021-01636-x [Citations: 7]