Elementwise Minimal Nonnegative Solutions for a Class of Nonlinear Matrix Equations

Elementwise Minimal Nonnegative Solutions for a Class of Nonlinear Matrix Equations

Year:    2019

Author:    Chacha Stephen Chacha, Hyun-Min Kim

East Asian Journal on Applied Mathematics, Vol. 9 (2019), Iss. 4 : pp. 665–682

Abstract

The existence of elementwise minimal nonnegative solutions of the nonlinear matrix equations 
                                               $A$$T$$X$2$A$ − $X$ + $I$ = 0,

                                               $A$$T$$X$$n$$A$ − $X$ + $I$ = 0, $n$ > 2

are studied. Using Newton's method with the zero initial guess, we show that under suitable conditions the corresponding iterations monotonically converge to the elementwise minimal nonnegative solutions of the above equations. Numerical experiments confirm theoretical results and the efficiency of the method.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/eajam.300518.120119

East Asian Journal on Applied Mathematics, Vol. 9 (2019), Iss. 4 : pp. 665–682

Published online:    2019-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    18

Keywords:    Elementwise minimal nonnegative solution Newton’s method monotonic convergence nonlinear matrix equation.

Author Details

Chacha Stephen Chacha

Hyun-Min Kim

  1. Solving Bisymmetric Solution of a Class of Matrix Equations Based on Linear Saturated System Model Neural Network

    Zhang, Feng | Wang, Fu-Kwun

    Mathematical Problems in Engineering, Vol. 2021 (2021), Iss. P.1

    https://doi.org/10.1155/2021/9934063 [Citations: 2]
  2. On Iterative Algorithm and Perturbation Analysis for the Nonlinear Matrix Equation

    Chacha, Chacha Stephen

    Communications on Applied Mathematics and Computation, Vol. 4 (2022), Iss. 3 P.1158

    https://doi.org/10.1007/s42967-021-00152-3 [Citations: 1]
  3. On solution and perturbation estimates for the nonlinear matrix equation  $$X-A^{*}e^{X}A=I$$

    Chacha, Chacha S.

    Journal of the Egyptian Mathematical Society, Vol. 30 (2022), Iss. 1

    https://doi.org/10.1186/s42787-022-00152-z [Citations: 0]
  4. One step inversion free iterative algorithm for computing generalised bisymmetric solution for nonlinear matrix equations

    Bayoumi, Ahmed M. E. | Ramadan, Mohamed A.

    International Journal of Control, Vol. (2024), Iss. P.1

    https://doi.org/10.1080/00207179.2024.2375570 [Citations: 0]