A Modified Newton Method for Nonlinear Eigenvalue Problems

A Modified Newton Method for Nonlinear Eigenvalue Problems

Year:    2018

East Asian Journal on Applied Mathematics, Vol. 8 (2018), Iss. 1 : pp. 139–150

Abstract

A modification to the Newton method for nonlinear eigenvalue problems is proposed and locally quadratic convergence of this algorithm is established. Numerical examples show the efficiency of the method and reduced computational cost.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/eajam.100916.061117a

East Asian Journal on Applied Mathematics, Vol. 8 (2018), Iss. 1 : pp. 139–150

Published online:    2018-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:    Nonlinear eigenvalue problem smallest singular value Newton method quadratic convergence.

  1. Spectral Distribution and Numerical Methods for Rational Eigenvalue Problems

    Chen, Xiaoping | Wei, Wei | Shi, Xueying | Luo, An

    Symmetry, Vol. 14 (2022), Iss. 6 P.1270

    https://doi.org/10.3390/sym14061270 [Citations: 1]
  2. A smallest singular value method for nonlinear eigenvalue problems

    Sadkane, Miloud

    Linear and Multilinear Algebra, Vol. 71 (2023), Iss. 1 P.16

    https://doi.org/10.1080/03081087.2021.2017832 [Citations: 0]
  3. On Convergence of MRQI and IMRQI Methods for Hermitian Eigenvalue Problems

    Chen, Fang | Miao, Cun-Qiang | Muratova, Galina V.

    Communications on Applied Mathematics and Computation, Vol. 3 (2021), Iss. 1 P.189

    https://doi.org/10.1007/s42967-020-00079-1 [Citations: 1]