Abundant Mixed Lump-Soliton Solutions to the BKP Equation

Abundant Mixed Lump-Soliton Solutions to the BKP Equation

Year:    2018

East Asian Journal on Applied Mathematics, Vol. 8 (2018), Iss. 2 : pp. 224–232

Abstract

Applying Maple symbolic computations, we derive eight sets of mixed lump-soliton solutions to the (2 + 1)-dimensional BKP equation. The solutions are analytic and allow the separation of lumps and line solitons.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/eajam.210917.051217a

East Asian Journal on Applied Mathematics, Vol. 8 (2018), Iss. 2 : pp. 224–232

Published online:    2018-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    9

Keywords:    Lump solution soliton solution symbolic computation.

  1. Mixed lump–kink solutions and lump–soliton solutions to the generalized BKP equation with some second order terms

    Huang, Qiao | Huang, Yehui | Zhang, Liqin

    Partial Differential Equations in Applied Mathematics, Vol. 5 (2022), Iss. P.100254

    https://doi.org/10.1016/j.padiff.2021.100254 [Citations: 1]
  2. Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation

    Zhang, Run-Fa | Bilige, Sudao

    Nonlinear Dynamics, Vol. 95 (2019), Iss. 4 P.3041

    https://doi.org/10.1007/s11071-018-04739-z [Citations: 232]
  3. Lump solutions with higher-order rational dispersion relations

    Ma, Wen-Xiu | Zhang, Liqin

    Pramana, Vol. 94 (2020), Iss. 1

    https://doi.org/10.1007/s12043-020-1918-9 [Citations: 90]
  4. A (2+1)-dimensional shallow water equation and its explicit lump solutions

    Manukure, Solomon | Zhou, Yuan

    International Journal of Modern Physics B, Vol. 33 (2019), Iss. 07 P.1950038

    https://doi.org/10.1142/S0217979219500383 [Citations: 15]
  5. A SEARCH FOR LUMP SOLUTIONS TO A COMBINED FOURTH-ORDER NONLINEAR PDE IN (2+1)-DIMENSIONS

    Ma, Wen-Xiu

    Journal of Applied Analysis & Computation, Vol. 9 (2019), Iss. 4 P.1319

    https://doi.org/10.11948/2156-907X.20180227 [Citations: 18]
  6. Lax pair, Darboux transformation, vector rational and semi-rational rogue waves for the three-component coupled Hirota equations in an optical fiber

    Du, Zhong | Tian, Bo | Chai, Han-Peng | Zhao, Xue-Hui

    The European Physical Journal Plus, Vol. 134 (2019), Iss. 5

    https://doi.org/10.1140/epjp/i2019-12515-4 [Citations: 13]
  7. Lump solutions to a (2+1)-dimensional fourth-order nonlinear PDE possessing a Hirota bilinear form

    Ma, Wen-Xiu | Manukure, Solomon | Wang, Hui | Batwa, Sumayah

    Modern Physics Letters B, Vol. 35 (2021), Iss. 09 P.2150160

    https://doi.org/10.1142/S0217984921501608 [Citations: 14]
  8. Interactions between soliton and rogue wave for a (2+1)-dimensional generalized breaking soliton system: Hidden rogue wave and hidden soliton

    Ma, Yu-Lan | Li, Bang-Qing

    Computers & Mathematics with Applications, Vol. 78 (2019), Iss. 3 P.827

    https://doi.org/10.1016/j.camwa.2019.03.002 [Citations: 75]
  9. The classification of the single traveling wave solutions to the time-fraction Gardner equation

    Cao, Damin

    Chinese Journal of Physics, Vol. 59 (2019), Iss. P.379

    https://doi.org/10.1016/j.cjph.2019.03.003 [Citations: 15]
  10. A novel approach via mixed Crank–Nicolson scheme and differential quadrature method for numerical solutions of solitons of mKdV equation

    Başhan, Ali

    Pramana, Vol. 92 (2019), Iss. 6

    https://doi.org/10.1007/s12043-019-1751-1 [Citations: 18]
  11. Lump-type solutions of a generalized Kadomtsev–Petviashvili equation in (3+1)-dimensions*

    Cheng, Xue-Ping | Ma, Wen-Xiu | Yang, Yun-Qing

    Chinese Physics B, Vol. 28 (2019), Iss. 10 P.100203

    https://doi.org/10.1088/1674-1056/ab3f20 [Citations: 7]
  12. Multiple lump solutions of the (3+1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation

    Zhao, Zhonglong | He, Lingchao

    Applied Mathematics Letters, Vol. 95 (2019), Iss. P.114

    https://doi.org/10.1016/j.aml.2019.03.031 [Citations: 81]
  13. A Darboux transformation for the Volterra lattice equation

    Ma, Wen-Xiu

    Analysis and Mathematical Physics, Vol. 9 (2019), Iss. 4 P.1711

    https://doi.org/10.1007/s13324-018-0267-z [Citations: 30]
  14. Multiple types of exact solutions and conservation laws of new coupled $$(2+1)$$-dimensional Zakharov–Kuznetsov system with time-dependent coefficients

    Kaur, Bikramjeet | Gupta, R K

    Pramana, Vol. 93 (2019), Iss. 4

    https://doi.org/10.1007/s12043-019-1806-3 [Citations: 6]
  15. Characteristics and interactions of solitary and lump waves of a (2 + 1)-dimensional coupled nonlinear partial differential equation

    Ren, Bo | Ma, Wen-Xiu | Yu, Jun

    Nonlinear Dynamics, Vol. 96 (2019), Iss. 1 P.717

    https://doi.org/10.1007/s11071-019-04816-x [Citations: 90]
  16. Solitons and lump wave solutions to the graphene thermophoretic motion system with a variable heat transmission

    Arif, Adeel | Younis, Muhammad | Imran, Muhammad | Tantawy, Mohammad | Raza Rizvi, Syed Tahir

    The European Physical Journal Plus, Vol. 134 (2019), Iss. 6

    https://doi.org/10.1140/epjp/i2019-12679-9 [Citations: 42]
  17. The quasi-AKNS and quasi-so(3) type AKNS hierarchies as well as a gallery of simple Lie algebras contained in sl(3;ℂ)

    Chang, Hui | Li, Yuxia | Dong, Huanhe | Zhi, Hongyan

    Journal of Geometry and Physics, Vol. 141 (2019), Iss. P.79

    https://doi.org/10.1016/j.geomphys.2019.02.008 [Citations: 0]
  18. Extended Transformed Rational Function Method to Nonlinear Evolution Equations

    Yaşar, Emrullah | Yıldırım, Yakup | Rashid Adem, Abdullahi

    International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 20 (2019), Iss. 6 P.691

    https://doi.org/10.1515/ijnsns-2018-0286 [Citations: 14]
  19. Lump and Mixed Rogue‐Soliton Solutions of the (2 + 1)‐Dimensional Mel’nikov System

    Deng, Yue-jun | Jia, Rui-yu | Lin, Ji | Volos, Christos

    Complexity, Vol. 2019 (2019), Iss. 1

    https://doi.org/10.1155/2019/1420274 [Citations: 8]
  20. New sub-equation method to construct solitons and other solutions for perturbed nonlinear Schrödinger equation with Kerr law nonlinearity in optical fiber materials

    Zayed, Elsayed M.E. | Al-Nowehy, Abdul-Ghani | Shohib, Reham M.A.

    Journal of Ocean Engineering and Science, Vol. 4 (2019), Iss. 1 P.14

    https://doi.org/10.1016/j.joes.2018.12.003 [Citations: 19]
  21. An expansion based on Sine-Gordon equation to Solve KdV and modified KdV equations in conformable fractional forms

    Hepson, Ozlem Ersoy | Korkmaz, Alper | Hosseini, Kamyar | Rezazadeh, Hadi | Eslami, Mostafa

    Boletim da Sociedade Paranaense de Matemática, Vol. 40 (2022), Iss. P.1

    https://doi.org/10.5269/bspm.44592 [Citations: 2]
  22. Optical solitons to the (n + 1)-dimensional nonlinear Schrödinger’s equation with Kerr law and power law nonlinearities using two integration schemes

    Inc, Mustafa | Aliyu, Aliyu Isa | Yusuf, Abdullahi | Bayram, Mustafa | Baleanu, Dumitru

    Modern Physics Letters B, Vol. 33 (2019), Iss. 19 P.1950224

    https://doi.org/10.1142/S0217984919502245 [Citations: 14]
  23. Interaction solutions to Hirota-Satsuma-Ito equation in (2 + 1)-dimensions

    Ma, Wen-Xiu

    Frontiers of Mathematics in China, Vol. 14 (2019), Iss. 3 P.619

    https://doi.org/10.1007/s11464-019-0771-y [Citations: 160]
  24. Rational solutions to two Sawada–Kotera-like equations

    Du, Ya-Hong | Yun, Yin-Shan | Ma, Wen-Xiu

    Modern Physics Letters B, Vol. 33 (2019), Iss. 09 P.1950108

    https://doi.org/10.1142/S0217984919501082 [Citations: 4]
  25. Symmetry analysis of some nonlinear generalised systems of space–time fractional partial differential equations with time-dependent variable coefficients

    Kumar, Sachin | Kour, Baljinder

    Pramana, Vol. 93 (2019), Iss. 2

    https://doi.org/10.1007/s12043-019-1791-6 [Citations: 5]
  26. A generating scheme for conservation laws of discrete zero curvature equations and its application

    Ma, Wen-Xiu

    Computers & Mathematics with Applications, Vol. 78 (2019), Iss. 10 P.3422

    https://doi.org/10.1016/j.camwa.2019.05.012 [Citations: 18]
  27. The construction of solutions to Zakharov–Kuznetsov equation with fractional power nonlinear terms

    Liu, Yang | Wang, Xin

    Advances in Difference Equations, Vol. 2019 (2019), Iss. 1

    https://doi.org/10.1186/s13662-019-2063-y [Citations: 15]
  28. Resonance nonlinear wave phenomena with obliqueness and fractional time evolution via the novel auxiliary ordinary differential equation method

    Akhter, S. | Hafez, M. G. | Rezazadeh, Hadi

    SN Applied Sciences, Vol. 1 (2019), Iss. 6

    https://doi.org/10.1007/s42452-019-0563-8 [Citations: 7]
  29. TRAVELING WAVE, LUMP WAVE, ROGUE WAVE, MULTI-KINK SOLITARY WAVE AND INTERACTION SOLUTIONS IN A (3+1)-DIMENSIONAL KADOMTSEV - PETVIASHVILI EQUATION WITH BÄCKLUND TRANSFORMATION

    Tian, Shoufu | Guo, Ding | Wang, Xiubin | Zhang, Tiantian

    Journal of Applied Analysis & Computation, Vol. 11 (2021), Iss. 1 P.45

    https://doi.org/10.11948/20190086 [Citations: 12]
  30. Determining lump solutions for a combined soliton equation in (2+1)-dimensions

    Yang, Jin-Yun | Ma, Wen-Xiu | Khalique, Chaudry Masood

    The European Physical Journal Plus, Vol. 135 (2020), Iss. 6

    https://doi.org/10.1140/epjp/s13360-020-00463-z [Citations: 86]
  31. Lump and Interaction Solutions to Linear (4+1)-Dimensional PDEs

    Ma, Wen-Xiu

    Acta Mathematica Scientia, Vol. 39 (2019), Iss. 2 P.498

    https://doi.org/10.1007/s10473-019-0214-6 [Citations: 36]
  32. Exact Solutions to a Generalized Bogoyavlensky‐Konopelchenko Equation via Maple Symbolic Computations

    Chen, Shou-Ting | Ma, Wen-Xiu | Volchenkov, Dimitri

    Complexity, Vol. 2019 (2019), Iss. 1

    https://doi.org/10.1155/2019/8787460 [Citations: 11]
  33. A Study on Lump Solutions to a Generalized Hirota‐Satsuma‐Ito Equation in (2+1)‐Dimensions

    Ma, Wen-Xiu | Li, Jie | Khalique, Chaudry Masood | Hens, Chittaranjan

    Complexity, Vol. 2018 (2018), Iss. 1

    https://doi.org/10.1155/2018/9059858 [Citations: 56]
  34. Numerical Different Methods for Solving the Nonlinear Biochemical Reaction Model

    Mahdy, A. M. S. | Higazy, M.

    International Journal of Applied and Computational Mathematics, Vol. 5 (2019), Iss. 6

    https://doi.org/10.1007/s40819-019-0740-x [Citations: 31]
  35. Soliton solutions to the B-type Kadomtsev–Petviashvili equation under general dispersion relations

    Ma, Wen-Xiu | Yong, Xuelin | Lü, Xing

    Wave Motion, Vol. 103 (2021), Iss. P.102719

    https://doi.org/10.1016/j.wavemoti.2021.102719 [Citations: 115]
  36. Complex Soliton Solutions to the Gilson–Pickering Model

    Baskonus, Haci Mehmet

    Axioms, Vol. 8 (2019), Iss. 1 P.18

    https://doi.org/10.3390/axioms8010018 [Citations: 59]
  37. RATIONAL AND INTERACTIVE SOLUTIONS TO THE B-TYPE KADOMTSEV-PETVIASHVILI EQUATION

    Zhou, Yuan | Manukure, Solomon

    Journal of Applied Analysis & Computation, Vol. 11 (2021), Iss. 5 P.2473

    https://doi.org/10.11948/20200446 [Citations: 1]
  38. New interaction phenomenon and the periodic lump wave for the Jimbo–Miwa equation

    Zhang, Runfa | Bilige, Sudao

    Modern Physics Letters B, Vol. 33 (2019), Iss. 06 P.1950067

    https://doi.org/10.1142/S0217984919500672 [Citations: 16]
  39. New exact solutions of generalized convection-reaction-diffusion equation

    Prakash, P.

    The European Physical Journal Plus, Vol. 134 (2019), Iss. 6

    https://doi.org/10.1140/epjp/i2019-12657-3 [Citations: 16]