Year: 2017
East Asian Journal on Applied Mathematics, Vol. 7 (2017), Iss. 3 : pp. 583–602
Abstract
We provide some computable error estimates in solving a nonsymmetric eigenvalue problem by general conforming finite element methods on general meshes. Based on the complementary method, we first give computable error estimates for both the original eigenfunctions and the corresponding adjoint eigenfunctions, and then we introduce a generalised Rayleigh quotient to deduce a computable error estimate for the eigenvalue approximations. Some numerical examples are presented to illustrate our theoretical results.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/eajam.140317.250517a
East Asian Journal on Applied Mathematics, Vol. 7 (2017), Iss. 3 : pp. 583–602
Published online: 2017-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 20
Keywords: Nonsymmetric eigenvalue problem computable error estimates asymptotical exactness finite element method complementary method.
-
Computable Error Estimates for Ground State Solution of Bose–Einstein Condensates
Xie, Hehu | Xie, MantingJournal of Scientific Computing, Vol. 81 (2019), Iss. 2 P.1072
https://doi.org/10.1007/s10915-019-01051-9 [Citations: 6] -
Guaranteed Lower Eigenvalue Bounds for Steklov Operators Using Conforming Finite Element Methods
Nakano, Taiga | Li, Qin | Yue, Meiling | Liu, XuefengComputational Methods in Applied Mathematics, Vol. 24 (2024), Iss. 2 P.495
https://doi.org/10.1515/cmam-2022-0218 [Citations: 4] -
A type of full multigrid method for non-selfadjoint Steklov eigenvalue problems in inverse scattering
Xie, Manting | Xu, Fei | Yue, MeilingESAIM: Mathematical Modelling and Numerical Analysis, Vol. 55 (2021), Iss. 5 P.1779
https://doi.org/10.1051/m2an/2021039 [Citations: 4] -
An asymptotically exact a posteriori error estimator for non-selfadjoint Steklov eigenvalue problem
Xu, Fei | Yue, Meiling | Huang, Qiumei | Ma, HongkunApplied Numerical Mathematics, Vol. 156 (2020), Iss. P.210
https://doi.org/10.1016/j.apnum.2020.04.020 [Citations: 5] -
A cascadic multigrid method for nonsymmetric eigenvalue problem
Yue, Meiling | Xie, Hehu | Xie, MantingApplied Numerical Mathematics, Vol. 146 (2019), Iss. P.55
https://doi.org/10.1016/j.apnum.2019.07.007 [Citations: 2]