Journals
Resources
About Us
Open Access

Computable Error Estimates for a Nonsymmetric Eigenvalue Problem

Computable Error Estimates for a Nonsymmetric Eigenvalue Problem

Year:    2017

East Asian Journal on Applied Mathematics, Vol. 7 (2017), Iss. 3 : pp. 583–602

Abstract

We provide some computable error estimates in solving a nonsymmetric eigenvalue problem by general conforming finite element methods on general meshes. Based on the complementary method, we first give computable error estimates for both the original eigenfunctions and the corresponding adjoint eigenfunctions, and then we introduce a generalised Rayleigh quotient to deduce a computable error estimate for the eigenvalue approximations. Some numerical examples are presented to illustrate our theoretical results.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/eajam.140317.250517a

East Asian Journal on Applied Mathematics, Vol. 7 (2017), Iss. 3 : pp. 583–602

Published online:    2017-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    20

Keywords:    Nonsymmetric eigenvalue problem computable error estimates asymptotical exactness finite element method complementary method.

  1. Computable Error Estimates for Ground State Solution of Bose–Einstein Condensates

    Xie, Hehu | Xie, Manting

    Journal of Scientific Computing, Vol. 81 (2019), Iss. 2 P.1072

    https://doi.org/10.1007/s10915-019-01051-9 [Citations: 6]
  2. Guaranteed Lower Eigenvalue Bounds for Steklov Operators Using Conforming Finite Element Methods

    Nakano, Taiga | Li, Qin | Yue, Meiling | Liu, Xuefeng

    Computational Methods in Applied Mathematics, Vol. 24 (2024), Iss. 2 P.495

    https://doi.org/10.1515/cmam-2022-0218 [Citations: 4]
  3. A type of full multigrid method for non-selfadjoint Steklov eigenvalue problems in inverse scattering

    Xie, Manting | Xu, Fei | Yue, Meiling

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 55 (2021), Iss. 5 P.1779

    https://doi.org/10.1051/m2an/2021039 [Citations: 4]
  4. An asymptotically exact a posteriori error estimator for non-selfadjoint Steklov eigenvalue problem

    Xu, Fei | Yue, Meiling | Huang, Qiumei | Ma, Hongkun

    Applied Numerical Mathematics, Vol. 156 (2020), Iss. P.210

    https://doi.org/10.1016/j.apnum.2020.04.020 [Citations: 5]
  5. A cascadic multigrid method for nonsymmetric eigenvalue problem

    Yue, Meiling | Xie, Hehu | Xie, Manting

    Applied Numerical Mathematics, Vol. 146 (2019), Iss. P.55

    https://doi.org/10.1016/j.apnum.2019.07.007 [Citations: 2]