Efficient Numerical Solution of the Multi-Term Time Fractional Diffusion-Wave Equation

Efficient Numerical Solution of the Multi-Term Time Fractional Diffusion-Wave Equation

Year:    2015

East Asian Journal on Applied Mathematics, Vol. 5 (2015), Iss. 1 : pp. 1–28

Abstract

Some efficient numerical schemes are proposed to solve one-dimensional and two-dimensional multi-term time fractional diffusion-wave equation, by combining the compact difference approach for the spatial discretisation and an $L1$ approximation for the multi-term time Caputo fractional derivatives. The unconditional stability and global convergence of these schemes are proved rigorously, and several applications testify to their efficiency and confirm the orders of convergence.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/eajam.080714.031114a

East Asian Journal on Applied Mathematics, Vol. 5 (2015), Iss. 1 : pp. 1–28

Published online:    2015-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    28

Keywords:    Multi-term time fractional diffusion-wave equation compact difference scheme discrete energy method convergence.

  1. H3N3-2$$_\sigma $$-based difference schemes for time multi-term fractional diffusion-wave equation

    Du, Ruilian | Li, Changpin | Su, Fang | Sun, Zhi-zhong

    Computational and Applied Mathematics, Vol. 43 (2024), Iss. 8

    https://doi.org/10.1007/s40314-024-02907-z [Citations: 0]
  2. Finite difference/spectral methods for the two-dimensional distributed-order time-fractional cable equation

    Zheng, Rumeng | Liu, Fawang | Jiang, Xiaoyun | Turner, Ian W.

    Computers & Mathematics with Applications, Vol. 80 (2020), Iss. 6 P.1523

    https://doi.org/10.1016/j.camwa.2020.06.017 [Citations: 15]
  3. A hybrid collocation method for the approximation of 2D time fractional diffusion-wave equation

    Shah, Farman Ali | Khan, Zareen A | Azmi, Fatima | Mlaiki, Nabil

    AIMS Mathematics, Vol. 9 (2024), Iss. 10 P.27122

    https://doi.org/10.3934/math.20241319 [Citations: 0]
  4. An alternating direction implicit spectral method for solving two dimensional multi-term time fractional mixed diffusion and diffusion-wave equations

    Liu, Zeting | Liu, Fawang | Zeng, Fanhai

    Applied Numerical Mathematics, Vol. 136 (2019), Iss. P.139

    https://doi.org/10.1016/j.apnum.2018.10.005 [Citations: 31]
  5. The Galerkin spectral element method for the solution of two‐dimensional multiterm time fractional diffusion‐wave equation

    Saffarian, Marziyeh | Mohebbi, Akbar

    Mathematical Methods in the Applied Sciences, Vol. 44 (2021), Iss. 4 P.2842

    https://doi.org/10.1002/mma.6049 [Citations: 5]
  6. Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations

    Bu, Weiping | Xiao, Aiguo | Zeng, Wei

    Journal of Scientific Computing, Vol. 72 (2017), Iss. 1 P.422

    https://doi.org/10.1007/s10915-017-0360-8 [Citations: 72]
  7. Jacobi Spectral Collocation Method for the Time Variable-Order Fractional Mobile-Immobile Advection-Dispersion Solute Transport Model

    Ma, Heping | Yang, Yubo

    East Asian Journal on Applied Mathematics, Vol. 6 (2016), Iss. 3 P.337

    https://doi.org/10.4208/eajam.141115.060616a [Citations: 17]
  8. An efficient hybrid numerical method for multi-term time fractional partial differential equations in fluid mechanics with convergence and error analysis

    Joujehi, A. Soltani | Derakhshan, M.H. | Marasi, H.R.

    Communications in Nonlinear Science and Numerical Simulation, Vol. 114 (2022), Iss. P.106620

    https://doi.org/10.1016/j.cnsns.2022.106620 [Citations: 12]
  9. Analysis of BDF2 finite difference method for fourth-order integro-differential equation

    Liu, Yanling | Yang, Xuehua | Zhang, Haixiang | Liu, Yuan

    Computational and Applied Mathematics, Vol. 40 (2021), Iss. 2

    https://doi.org/10.1007/s40314-021-01449-y [Citations: 3]
  10. A numerical method for two-dimensional multi-term time-space fractional nonlinear diffusion-wave equations

    Huang, Jianfei | Zhang, Jingna | Arshad, Sadia | Tang, Yifa

    Applied Numerical Mathematics, Vol. 159 (2021), Iss. P.159

    https://doi.org/10.1016/j.apnum.2020.09.003 [Citations: 25]
  11. The Unstructured Mesh Finite Element Method for the Two-Dimensional Multi-term Time–Space Fractional Diffusion-Wave Equation on an Irregular Convex Domain

    Fan, Wenping | Jiang, Xiaoyun | Liu, Fawang | Anh, Vo

    Journal of Scientific Computing, Vol. 77 (2018), Iss. 1 P.27

    https://doi.org/10.1007/s10915-018-0694-x [Citations: 27]
  12. Existence and uniqueness results for a multi-parameters nonlocal diffusion equation

    Suhaib, Kamran | Malik, Salman A. | Ilyas, Asim

    Reports on Mathematical Physics, Vol. 90 (2022), Iss. 2 P.203

    https://doi.org/10.1016/S0034-4877(22)00066-0 [Citations: 5]
  13. A Mixed Finite Element Method for the Multi-Term Time-Fractional Reaction–Diffusion Equations

    Zhao, Jie | Dong, Shubin | Fang, Zhichao

    Fractal and Fractional, Vol. 8 (2024), Iss. 1 P.51

    https://doi.org/10.3390/fractalfract8010051 [Citations: 0]
  14. An efficient alternating segment parallel finite difference method for multi-term time fractional diffusion-wave equation

    Wu, Lifei | Pan, Yueyue | Yang, Xiaozhong

    Computational and Applied Mathematics, Vol. 40 (2021), Iss. 2

    https://doi.org/10.1007/s40314-021-01455-0 [Citations: 3]
  15. Identifying a fractional order and a time-dependent coefficient in a time-fractional diffusion wave equation

    Yan, Xiong-bin | Wei, Ting

    Journal of Computational and Applied Mathematics, Vol. 424 (2023), Iss. P.114995

    https://doi.org/10.1016/j.cam.2022.114995 [Citations: 3]
  16. Simultaneous inversion of a time-dependent potential coefficient and a time source term in a time fractional diffusion-wave equation

    Yan, Xiong-bin | Zhang, Zheng-qiang | Wei, Ting

    Chaos, Solitons & Fractals, Vol. 157 (2022), Iss. P.111901

    https://doi.org/10.1016/j.chaos.2022.111901 [Citations: 6]
  17. A superlinear convergence scheme for the multi‐term and distribution‐order fractional wave equation with initial singularity

    Huang, Jianfei | Zhang, Jingna | Arshad, Sadia | Tang, Yifa

    Numerical Methods for Partial Differential Equations, Vol. 37 (2021), Iss. 4 P.2833

    https://doi.org/10.1002/num.22773 [Citations: 3]
  18. Numerical solution of multi-term time fractional wave diffusion equation using transform based local meshless method and quadrature

    Li, Jing | Dai, Linlin | Nazeer, Waqas

    AIMS Mathematics, Vol. 5 (2020), Iss. 6 P.5813

    https://doi.org/10.3934/math.2020373 [Citations: 7]
  19. Anisotropic linear triangle finite element approximation for multi-term time-fractional mixed diffusion and diffusion-wave equations with variable coefficient on 2D bounded domain

    Zhao, Yanmin | Wang, Fenling | Hu, Xiaohan | Shi, Zhengguang | Tang, Yifa

    Computers & Mathematics with Applications, Vol. 78 (2019), Iss. 5 P.1705

    https://doi.org/10.1016/j.camwa.2018.11.028 [Citations: 13]
  20. Finite Difference Approximation for the Space-Time Fractional Linear Diffusion Equation Involving the Caputo-Hadamard Fractional Derivative

    Bouchama, Kaouther | Arioua, Yacine | Merzougui, Abdelkrim

    International Journal of Applied and Computational Mathematics, Vol. 9 (2023), Iss. 4

    https://doi.org/10.1007/s40819-023-01527-1 [Citations: 0]
  21. Two meshless procedures: moving Kriging interpolation and element-free Galerkin for fractional PDEs

    Dehghan, Mehdi | Abbaszadeh, Mostafa

    Applicable Analysis, Vol. 96 (2017), Iss. 6 P.936

    https://doi.org/10.1080/00036811.2016.1167879 [Citations: 20]
  22. The efficient alternating direction implicit Galerkin method for the nonlocal diffusion-wave equation in three dimensions

    Huang, Qiong | Qi, Ren-jun | Qiu, Wenlin

    Journal of Applied Mathematics and Computing, Vol. 68 (2022), Iss. 5 P.3067

    https://doi.org/10.1007/s12190-021-01652-4 [Citations: 5]
  23. Gauss‐Lobatto‐Legendre‐Birkhoff pseudospectral approximations for the multi‐term time fractional diffusion‐wave equation with Neumann boundaryconditions

    Liu, Haiyu | Lü, Shujuan

    Numerical Methods for Partial Differential Equations, Vol. 34 (2018), Iss. 6 P.2217

    https://doi.org/10.1002/num.22284 [Citations: 5]
  24. Approximate solution of the multi-term time fractional diffusion and diffusion-wave equations

    Rashidinia, Jalil | Mohmedi, Elham

    Computational and Applied Mathematics, Vol. 39 (2020), Iss. 3

    https://doi.org/10.1007/s40314-020-01241-4 [Citations: 9]
  25. A higher order unconditionally stable numerical technique for multi-term time-fractional diffusion and advection–diffusion equations

    Choudhary, Renu | Singh, Satpal | Kumar, Devendra

    Computational and Applied Mathematics, Vol. 43 (2024), Iss. 5

    https://doi.org/10.1007/s40314-024-02688-5 [Citations: 0]
  26. A fast temporal second-order compact ADI difference scheme for the 2D multi-term fractional wave equation

    Sun, Hong | Sun, Zhi-zhong

    Numerical Algorithms, Vol. 86 (2021), Iss. 2 P.761

    https://doi.org/10.1007/s11075-020-00910-z [Citations: 15]
  27. NUMERICAL SOLUTIONS OF THE INTEGRO-PARTIAL FRACTIONAL DIFFUSION HEAT EQUATION INVOLVING TEMPERED $$\psi$$-CAPUTO FRACTIONAL DERIVATIVE

    Baroudi, Sami | Elomari, M.’hamed | El Mfadel, Ali | Kassidi, Abderrazak

    Journal of Mathematical Sciences, Vol. 271 (2023), Iss. 4 P.555

    https://doi.org/10.1007/s10958-023-06640-6 [Citations: 0]
  28. A high-order unconditionally stable numerical method for a class of multi-term time-fractional diffusion equation arising in the solute transport models

    Alam, Mohammad Prawesh | Khan, Arshad | Baleanu, Dumitru

    International Journal of Computer Mathematics, Vol. 100 (2023), Iss. 1 P.105

    https://doi.org/10.1080/00207160.2022.2082248 [Citations: 16]
  29. Finite difference/finite element method for a novel 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains

    Feng, Libo | Liu, Fawang | Turner, Ian

    Communications in Nonlinear Science and Numerical Simulation, Vol. 70 (2019), Iss. P.354

    https://doi.org/10.1016/j.cnsns.2018.10.016 [Citations: 66]
  30. Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations

    Wei, Ya-bing | Zhao, Yan-min | Shi, Zheng-guang | Wang, Fen-ling | Tang, Yi-fa

    Acta Mathematicae Applicatae Sinica, English Series, Vol. 34 (2018), Iss. 4 P.828

    https://doi.org/10.1007/s10255-018-0795-1 [Citations: 5]
  31. An implicit fully discrete compact finite difference scheme for time fractional diffusion-wave equation

    An, Wenjing | Zhang, Xingdong

    Electronic Research Archive, Vol. 32 (2023), Iss. 1 P.354

    https://doi.org/10.3934/era.2024017 [Citations: 0]
  32. An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation

    Qiao, Leijie | Wang, Zhibo | Xu, Da

    Applied Numerical Mathematics, Vol. 151 (2020), Iss. P.199

    https://doi.org/10.1016/j.apnum.2020.01.003 [Citations: 44]
  33. Discrete singular convolution for fourth-order multi-term time fractional equation

    Liu, Xingguo | Yang, Xuehua | Zhang, Haixiang | Liu, Yanling

    Tbilisi Mathematical Journal, Vol. 14 (2021), Iss. 2

    https://doi.org/10.32513/tmj/19322008118 [Citations: 0]
  34. Analytical and numerical solutions of a two‐dimensional multiterm time‐fractional diffusion model

    Zhang, Jinghua

    Mathematical Methods in the Applied Sciences, Vol. 44 (2021), Iss. 14 P.11648

    https://doi.org/10.1002/mma.7521 [Citations: 0]
  35. Coupling of the improved singular boundary method and dual reciprocity method for multi-term time-fractional mixed diffusion-wave equations

    Safari, Farzaneh | Chen, Wen

    Computers & Mathematics with Applications, Vol. 78 (2019), Iss. 5 P.1594

    https://doi.org/10.1016/j.camwa.2019.02.001 [Citations: 28]
  36. Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations

    Zhao, Yanmin | Zhang, Yadong | Liu, F. | Turner, I. | Tang, Yifa | Anh, V.

    Computers & Mathematics with Applications, Vol. 73 (2017), Iss. 6 P.1087

    https://doi.org/10.1016/j.camwa.2016.05.005 [Citations: 44]
  37. High‐order compact finite difference method for the multi‐term time fractional mixed diffusion and diffusion‐wave equation

    Yu, Bo

    Mathematical Methods in the Applied Sciences, Vol. 44 (2021), Iss. 8 P.6526

    https://doi.org/10.1002/mma.7207 [Citations: 4]
  38. Sixth-order non-uniform combined compact difference scheme for multi-term time fractional diffusion-wave equation

    Soori, Z. | Aminataei, A.

    Applied Numerical Mathematics, Vol. 131 (2018), Iss. P.72

    https://doi.org/10.1016/j.apnum.2018.04.006 [Citations: 12]
  39. Analytical solution and nonconforming finite element approximation for the 2D multi-term fractional subdiffusion equation

    Zhao, Y.M. | Zhang, Y.D. | Liu, F. | Turner, I. | Shi, D.Y.

    Applied Mathematical Modelling, Vol. 40 (2016), Iss. 19-20 P.8810

    https://doi.org/10.1016/j.apm.2016.05.039 [Citations: 31]
  40. Orthogonal spline collocation scheme for multiterm fractional convection‐diffusion equation with variable coefficients

    Yang, Xuehua | Zhang, Haixiang | Xu, Da

    Numerical Methods for Partial Differential Equations, Vol. 34 (2018), Iss. 2 P.555

    https://doi.org/10.1002/num.22213 [Citations: 3]
  41. A unified numerical scheme for the multi-term time fractional diffusion and diffusion-wave equations with variable coefficients

    Chen, Hu | Lü, Shujuan | Chen, Wenping

    Journal of Computational and Applied Mathematics, Vol. 330 (2018), Iss. P.380

    https://doi.org/10.1016/j.cam.2017.09.011 [Citations: 29]
  42. The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for the Time Multi-term Fractional Wave Equation

    Sun, Hong | Zhao, Xuan | Sun, Zhi-zhong

    Journal of Scientific Computing, Vol. 78 (2019), Iss. 1 P.467

    https://doi.org/10.1007/s10915-018-0820-9 [Citations: 27]
  43. Nonconforming quasi-Wilson finite element method for 2D multi-term time fractional diffusion-wave equation on regular and anisotropic meshes

    Shi, Z.G. | Zhao, Y.M. | Liu, F. | Wang, F.L. | Tang, Y.F.

    Applied Mathematics and Computation, Vol. 338 (2018), Iss. P.290

    https://doi.org/10.1016/j.amc.2018.06.026 [Citations: 5]
  44. A finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation

    Yaseen, Muhammad | Abbas, Muhammad | Nazir, Tahir | Baleanu, Dumitru

    Advances in Difference Equations, Vol. 2017 (2017), Iss. 1

    https://doi.org/10.1186/s13662-017-1330-z [Citations: 41]
  45. L1‐type finite element method for time‐fractional diffusion‐wave equations on nonuniform grids

    Xu, Xianyu | Chen, Yanping | Huang, Jian

    Numerical Methods for Partial Differential Equations, Vol. 40 (2024), Iss. 6

    https://doi.org/10.1002/num.23150 [Citations: 0]
  46. Meshfree numerical integration for some challenging multi-term fractional order PDEs

    Samad, Abdul | Siddique, Imran | Jarad, Fahd

    AIMS Mathematics, Vol. 7 (2022), Iss. 8 P.14249

    https://doi.org/10.3934/math.2022785 [Citations: 1]