Momentum Conservative Schemes for Shallow Water Flows

Momentum Conservative Schemes for Shallow Water Flows

Year:    2014

East Asian Journal on Applied Mathematics, Vol. 4 (2014), Iss. 2 : pp. 152–165

Abstract

We discuss the implementation of the finite volume method on a staggered grid to solve the full shallow water equations with a conservative approximation for the advection term. Stelling & Duinmeijer [15] noted that the advection approximation may be energy-head or momentum conservative, and if suitable which of these to implement depends upon the particular flow being considered. The momentum conservative scheme pursued here is shown to be suitable for 1D problems such as transcritical flow with a shock and dam break over a rectangular bed, and we also found that our simulation of dam break over a dry sloping bed is in good agreement with the exact solution. Further, the results obtained using the generalised momentum conservative approximation for 2D shallow water equations to simulate wave run up on a conical island are in good agreement with benchmark experimental data.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/eajam.290913.170314a

East Asian Journal on Applied Mathematics, Vol. 4 (2014), Iss. 2 : pp. 152–165

Published online:    2014-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    14

Keywords:    Finite volume method staggered grid conservative scheme shallow water equations.

  1. Numerical simulation of tidal bore in Kampar river: a preliminary study

    Abdullah, F A R | Ningsih, N S | Rachmayani, R

    IOP Conference Series: Earth and Environmental Science, Vol. 339 (2019), Iss. 1 P.012022

    https://doi.org/10.1088/1755-1315/339/1/012022 [Citations: 1]
  2. Derivation of fundamental resonant period in width-varying semi-closed basins using modified SWE

    Magdalena, I. | Karima, N. | Rif’atin, H.Q.

    Journal of King Saud University - Science, Vol. 34 (2022), Iss. 8 P.102266

    https://doi.org/10.1016/j.jksus.2022.102266 [Citations: 4]
  3. Influences of coriolis force and friction on fluid dynamics in specific paraboloid basins

    Magdalena, I. |

    Physics of Fluids, Vol. 36 (2024), Iss. 4

    https://doi.org/10.1063/5.0197832 [Citations: 1]
  4. Staggered Conservative Scheme for 2-Dimensional Shallow Water Flows

    Erwina, Novry | Adytia, Didit | Pudjaprasetya, Sri Redjeki | Nuryaman, Toni

    Fluids, Vol. 5 (2020), Iss. 3 P.149

    https://doi.org/10.3390/fluids5030149 [Citations: 6]
  5. An Efficient Two-Layer Non-Hydrostatic Model for Investigating Wave Run-Up Phenomena

    Magdalena, Ikha | Erwina, Novry

    Computation, Vol. 8 (2019), Iss. 1 P.1

    https://doi.org/10.3390/computation8010001 [Citations: 9]
  6. Wave resonance mitigation using a rigid submerged breakwater in a varying-width channel

    Magdalena, I. | Valerio, R. M.

    Physics of Fluids, Vol. 36 (2024), Iss. 3

    https://doi.org/10.1063/5.0195339 [Citations: 0]
  7. Seiches in a Closed Basin of Various Geometric Shape

    Rif’atin, H Q | Magdalena, I

    Journal of Physics: Conference Series, Vol. 1245 (2019), Iss. 1 P.012061

    https://doi.org/10.1088/1742-6596/1245/1/012061 [Citations: 7]
  8. Comparison of Taylor Galerkin and FTCS models for dam-break simulation

    Hafiyyan, Q | Adityawan, M B | Harlan, D | Natakusumah, D K | Magdalena, I

    IOP Conference Series: Earth and Environmental Science, Vol. 737 (2021), Iss. 1 P.012050

    https://doi.org/10.1088/1755-1315/737/1/012050 [Citations: 1]
  9. Analytical and numerical studies for wave generated by submarine landslide

    Magdalena, Ikha | Firdaus, Kemal | Jayadi, Devina

    Alexandria Engineering Journal, Vol. 61 (2022), Iss. 9 P.7303

    https://doi.org/10.1016/j.aej.2021.12.069 [Citations: 5]
  10. Numerical and experimental investigations on wave transmission reduction using vegetation models

    AlYousif, Ahmad | Magdalena, I. | Rif'atin, H.Q. | Abdulrahman, Reem H. | Neelamani, S.

    Wave Motion, Vol. 130 (2024), Iss. P.103389

    https://doi.org/10.1016/j.wavemoti.2024.103389 [Citations: 0]
  11. Analytical and numerical studies for harbor oscillation in a semi-closed basin of various geometric shapes with porous media

    Magdalena, I. | Rif’atin, H.Q.

    Mathematics and Computers in Simulation, Vol. 170 (2020), Iss. P.351

    https://doi.org/10.1016/j.matcom.2019.10.020 [Citations: 12]
  12. Free-surface long wave propagation over linear and parabolic transition shelves

    Magdalena, Ikha | Reeve, Dominic E.

    Water Science and Engineering, Vol. 11 (2018), Iss. 4 P.318

    https://doi.org/10.1016/j.wse.2019.01.001 [Citations: 12]
  13. Optimization of stepped revetment configuration on minimizing wave run-up and overtopping

    Rif'atin, Hany Qoshirotur | Magdalena, Ikha | Dewata, Dara | Saengsupavanich, Cherdvong | Sanitwong-na-Ayutthaya, Sarinya

    Physics of Fluids, Vol. 36 (2024), Iss. 4

    https://doi.org/10.1063/5.0195542 [Citations: 0]
  14. Analytical and numerical studies of resonant wave run-up on a plane structure

    Andadari, G | Magdalena, I

    Journal of Physics: Conference Series, Vol. 1321 (2019), Iss. 2 P.022079

    https://doi.org/10.1088/1742-6596/1321/2/022079 [Citations: 16]
  15. Seiches and harbour oscillations in a porous semi-closed basin

    Magdalena, I. | Rif'atin, H.Q. | Reeve, D.E.

    Applied Mathematics and Computation, Vol. 369 (2020), Iss. P.124835

    https://doi.org/10.1016/j.amc.2019.124835 [Citations: 12]
  16. Neural Network Modelling on Wave Dissipation Due to Mangrove Forest

    Malvin, Nicholas | Pudjaprasetya, Sri Redjeki | Adytia, Didit

    2020 International Conference on Data Science and Its Applications (ICoDSA), (2020), P.1

    https://doi.org/10.1109/ICoDSA50139.2020.9212826 [Citations: 1]
  17. Analytical and numerical studies for seiches in a closed basin with various geometric shapes of longitudinal section

    Magdalena, I. | Karima, N. | Rif'atin, H.Q.

    Theoretical and Applied Mechanics Letters, Vol. 11 (2021), Iss. 3 P.100246

    https://doi.org/10.1016/j.taml.2021.100246 [Citations: 3]
  18. Two layer model for n-emerged porous breakwater on a muddy bottom

    Magdalena, I. | Michael, L.

    Results in Applied Mathematics, Vol. 15 (2022), Iss. P.100290

    https://doi.org/10.1016/j.rinam.2022.100290 [Citations: 1]
  19. Wave Interaction with an Emerged Porous Media

    Magdalena, I. | Pudjaprasetya, S. R. | Wiryanto, L. H.

    Advances in Applied Mathematics and Mechanics, Vol. 6 (2014), Iss. 5 P.680

    https://doi.org/10.4208/aamm.2014.5.s5 [Citations: 23]
  20. Numerical treatment of finite difference method for solving dam break model on a wet-dry bed with an obstacle

    Magdalena, I. | Eka Pebriansyah, Muhamad Fikri

    Results in Engineering, Vol. 14 (2022), Iss. P.100382

    https://doi.org/10.1016/j.rineng.2022.100382 [Citations: 13]
  21. Application of particle swarm optimization in optimal placement of tsunami sensors

    Ferrolino, Angelie | Mendoza, Renier | Magdalena, Ikha | Lope, Jose Ernie

    PeerJ Computer Science, Vol. 6 (2020), Iss. P.e333

    https://doi.org/10.7717/peerj-cs.333 [Citations: 10]
  22. Numerical study for Sunda Strait Tsunami wave propagation and its mitigation by mangroves in Lampung, Indonesia

    Firdaus, Kemal | Matin, Alvedian Mauditra A. | Nurisman, Nanda | Magdalena, Ikha

    Results in Engineering, Vol. 16 (2022), Iss. P.100605

    https://doi.org/10.1016/j.rineng.2022.100605 [Citations: 6]
  23. Numerical simulation of granular landslide using predictor-corrector method

    Fauzi, Rifky | Wiryanto, Leo Hari

    THE 10TH INTERNATIONAL BASIC SCIENCE INTERNATIONAL CONFERENCE (BASIC) 2022, (2023), P.060001

    https://doi.org/10.1063/5.0166775 [Citations: 0]
  24. Wave transmission coefficient reduction by wooden fences

    Magdalena, Ikha | Safira, Thalia Diandra | Firdaus, Kemal | Rif’atin, H.Q.

    Wave Motion, Vol. 127 (2024), Iss. P.103286

    https://doi.org/10.1016/j.wavemoti.2024.103286 [Citations: 0]
  25. Resonant Periods of Seiches in Semi-Closed Basins with Complex Bottom Topography

    Magdalena, Ikha | Karima, Nadhira | Rif’atin, Hany Qoshirotur

    Fluids, Vol. 6 (2021), Iss. 5 P.181

    https://doi.org/10.3390/fluids6050181 [Citations: 12]
  26. Optimal sinusoidal submerged breakwater for coastal protection

    Atras, Muh. Fadhel | Lalang, Raynaldi | Magdalena, Ikha

    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2020 (MATHTECH 2020): Sustainable Development of Mathematics & Mathematics in Sustainability Revolution, (2021), P.020022

    https://doi.org/10.1063/5.0075708 [Citations: 3]
  27. Incident and reflected wave separation on wave propagation over breakwater

    Magdalena, I | Atras, M F

    Journal of Physics: Conference Series, Vol. 1751 (2021), Iss. 1 P.012003

    https://doi.org/10.1088/1742-6596/1751/1/012003 [Citations: 0]
  28. Numerical Simulation of Propagation and Run-Up of Long Waves in U-Shaped Bays

    Pudjaprasetya, Sri R. | Risriani, Vania M. |

    Fluids, Vol. 6 (2021), Iss. 4 P.146

    https://doi.org/10.3390/fluids6040146 [Citations: 5]
  29. Staggered Scheme for Shallow Water Equations with Quadtree-subgrid

    Fristella, F. | Pudjaprasetya, S.R.

    Journal of Physics: Conference Series, Vol. 1245 (2019), Iss. 1 P.012009

    https://doi.org/10.1088/1742-6596/1245/1/012009 [Citations: 0]
  30. A Coupled Model for Wave Run-up Simulation

    Pudjaprasetya, S.R.

    East Asian Journal on Applied Mathematics, Vol. 7 (2017), Iss. 4 P.728

    https://doi.org/10.4208/eajam.181016.300517b [Citations: 4]
  31. A Nonhydrostatic Two-Layer Staggered Scheme for Transient Waves due to Anti-Symmetric Seabed Thrust

    Pudjaprasetya, S. R. | Magdalena, I. | Tjandra, S. S.

    Journal of Earthquake and Tsunami, Vol. 11 (2017), Iss. 01 P.1740002

    https://doi.org/10.1142/S1793431117400024 [Citations: 11]
  32. Simulation of wave mitigation by coastal vegetation using smoothed particle hydrodynamics method

    Gunawan, P H

    Journal of Physics: Conference Series, Vol. 693 (2016), Iss. P.012013

    https://doi.org/10.1088/1742-6596/693/1/012013 [Citations: 1]
  33. The Momentum Conserving Scheme for Two-Layer Shallow Flows

    Swastika, Putu Veri | Pudjaprasetya, Sri Redjeki

    Fluids, Vol. 6 (2021), Iss. 10 P.346

    https://doi.org/10.3390/fluids6100346 [Citations: 3]
  34. Numerical approaches for Boussinesq type equations with its application in Kampar River, Indonesia

    Magdalena, I. | Haloho, D.N. | Adityawan, M.B.

    Mathematics and Computers in Simulation, Vol. 225 (2024), Iss. P.820

    https://doi.org/10.1016/j.matcom.2023.05.002 [Citations: 2]
  35. Implementation of OpenMP for Solving Linear Shallow Water Equations using Staggered Grid and MacCormack Scheme

    Gunawan, Putu Harry | Palupi, Irma | Ikhsan, Nurul

    2023 3rd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA), (2023), P.506

    https://doi.org/10.1109/ICICyTA60173.2023.10428698 [Citations: 0]
  36. Two-Layer Non-Hydrostatic Scheme for Simulations of Wave Runup

    Ginting, M. A. | Pudjaprasetya, S. R. | Adytia, D.

    Journal of Earthquake and Tsunami, Vol. 13 (2019), Iss. 05n06

    https://doi.org/10.1142/S1793431119410045 [Citations: 1]
  37. Staggered Conservative Scheme for Simulating the Emergence of a Jamiton in a Phantom Traffic Jam

    Malvin, N. | Pudjaprasetya, S. R.

    International Journal of Intelligent Transportation Systems Research, Vol. 19 (2021), Iss. 1 P.128

    https://doi.org/10.1007/s13177-020-00229-y [Citations: 1]
  38. Harmonic generation in Palu Bay, Indonesia

    Magdalena, I. | Pradharma, J.F. | Rif’atin, H.Q. | Farid, M.

    Ocean Modelling, Vol. 186 (2023), Iss. P.102281

    https://doi.org/10.1016/j.ocemod.2023.102281 [Citations: 0]
  39. Wave Transmission by Rectangular Submerged Breakwaters

    Magdalena, Ikha | Atras, Muh Fadhel | Sembiring, Leo | Nugroho, M. A. | Labay, Roi Solomon B. | Roque, Marian P.

    Computation, Vol. 8 (2020), Iss. 2 P.56

    https://doi.org/10.3390/computation8020056 [Citations: 16]
  40. The momentum conservative scheme for simulating nonlinear wave evolution and run-up in U-shaped bays

    Pudjaprasetya, Sri Redjeki | Sulvianuri, Rani

    Japan Journal of Industrial and Applied Mathematics, Vol. 40 (2023), Iss. 1 P.737

    https://doi.org/10.1007/s13160-022-00549-4 [Citations: 0]
  41. Optimal placement of tsunami sensors with depth constraint

    Magdalena, Ikha | La’lang, Raynaldi | Mendoza, Renier | Lope, Jose Ernie

    PeerJ Computer Science, Vol. 7 (2021), Iss. P.e685

    https://doi.org/10.7717/peerj-cs.685 [Citations: 2]
  42. Analytical and numerical solution for wave reflection from a porous wave absorber

    Magdalena, Ikha | Roque, Marian P.

    Journal of Physics: Conference Series, Vol. 974 (2018), Iss. P.012042

    https://doi.org/10.1088/1742-6596/974/1/012042 [Citations: 2]
  43. A Dispersive Numerical Model for the Formation of Undular Bores Generated by Tsunami Wave Fission

    Magdalena, I.

    East Asian Journal on Applied Mathematics, Vol. 7 (2017), Iss. 4 P.767

    https://doi.org/10.4208/eajam.161016.300517b [Citations: 4]
  44. Non-Hydrostatic Model for Solitary Waves Passing Through a Porous Structure

    Magdalena, Ikha

    Journal of Disaster Research, Vol. 11 (2016), Iss. 5 P.957

    https://doi.org/10.20965/jdr.2016.p0957 [Citations: 16]
  45. Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects

    A Hydrodynamic Model for Dispersive Waves Generated by Bottom Motion

    Pudjaprasetya, S. R. | Tjandra, S. S.

    2014

    https://doi.org/10.1007/978-3-319-05684-5_44 [Citations: 0]
  46. A Momentum-Conserving Scheme for Flow Simulation in 1D Channel with Obstacle and Contraction

    Swastika, Putu Veri | Pudjaprasetya, Sri Redjeki | Wiryanto, Leo Hari | Hadiarti, Revi Nurfathhiyah

    Fluids, Vol. 6 (2021), Iss. 1 P.26

    https://doi.org/10.3390/fluids6010026 [Citations: 6]
  47. Numerical Simulation of Wave Runup and Overtopping for Short and Long Waves Using Staggered Grid Variational Boussinesq

    Adytia, Didit | Pudjaprasetya, Sri Redjeki

    Journal of Earthquake and Tsunami, Vol. 14 (2020), Iss. 05

    https://doi.org/10.1142/S1793431120400059 [Citations: 2]
  48. Water waves resonance and its interaction with submerged breakwater

    Magdalena, I. | Jonathan, G.

    Results in Engineering, Vol. 13 (2022), Iss. P.100343

    https://doi.org/10.1016/j.rineng.2022.100343 [Citations: 18]
  49. Aceh's tsunami wave evolution and its interaction with hybrid protection structure

    Magdalena, Ikha | Rif'atin, Hany Qoshirotur | Kongko, Widjo | Marta, Adnan Sandy Dwi | Khoirunnisa, Hanah | Nurwijayanti, Amalia | Farid, Mohammad

    Physics of Fluids, Vol. 36 (2024), Iss. 2

    https://doi.org/10.1063/5.0185672 [Citations: 1]
  50. Analytical and numerical studies for Seiches in a closed basin with bottom friction

    Magdalena, I. | Rif’atin, H.Q. | Matin, A. Mauditra A.

    Theoretical and Applied Mechanics Letters, Vol. 10 (2020), Iss. 6 P.429

    https://doi.org/10.1016/j.taml.2020.01.057 [Citations: 13]
  51. Staggered scheme for the Exner–shallow water equations

    Gunawan, P. H. | Eymard, R. | Pudjaprasetya, S. R.

    Computational Geosciences, Vol. 19 (2015), Iss. 6 P.1197

    https://doi.org/10.1007/s10596-015-9533-4 [Citations: 17]
  52. A non-hydrostatic numerical scheme for dispersive waves generated by bottom motion

    Tjandra, S.S. | Pudjaprasetya, S.R.

    Wave Motion, Vol. 57 (2015), Iss. P.245

    https://doi.org/10.1016/j.wavemoti.2015.04.008 [Citations: 8]
  53. A Mathematical Model for Investigating The Resonance Phenomenon in Lakes

    Magdalena, I. | Karima, N. | Rif’atin, H.Q.

    Wave Motion, Vol. 100 (2021), Iss. P.102669

    https://doi.org/10.1016/j.wavemoti.2020.102669 [Citations: 6]
  54. Dispersive Model for Undular Hydraulic Jump Behind a Weir

    Magdalena, I | Sutjianto, F J | Sani, A | Anastasia, R

    Journal of Physics: Conference Series, Vol. 1751 (2021), Iss. 1 P.012005

    https://doi.org/10.1088/1742-6596/1751/1/012005 [Citations: 1]
  55. The Momentum Conserving Scheme Implementation for Simulating Dambreak Flow in a Channel with Various Contractions

    Swastika, P V | Pudjaprasetya, S R

    IOP Conference Series: Earth and Environmental Science, Vol. 925 (2021), Iss. 1 P.012012

    https://doi.org/10.1088/1755-1315/925/1/012012 [Citations: 0]
  56. Numerical study of wave damping by trapezoidal breakwater

    Marcela, Indriana | Jonathan, Gabriel | Magdalena, Ikha

    THE 4TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCES, MATHEMATICS, AND INFORMATICS: ICASMI2022, (2024), P.030019

    https://doi.org/10.1063/5.0208623 [Citations: 0]
  57. Staggered Momentum Conservative Scheme For Radial Dam Break Simulation

    Magdalena, I. | Erwina, N. | Pudjaprasetya, S. R.

    Journal of Scientific Computing, Vol. 65 (2015), Iss. 3 P.867

    https://doi.org/10.1007/s10915-015-9987-5 [Citations: 29]
  58. An integrated study of wave attenuation by vegetation

    Magdalena, Ikha | Andadari, Gita Rayung | Reeve, Dominic E.

    Wave Motion, Vol. 110 (2022), Iss. P.102878

    https://doi.org/10.1016/j.wavemoti.2021.102878 [Citations: 5]
  59. Shock capturing staggered grid scheme for simulating dam-break flow and runup

    Alfikri, M Z | Adytia, D | Subasita, N

    Journal of Physics: Conference Series, Vol. 1192 (2019), Iss. P.012041

    https://doi.org/10.1088/1742-6596/1192/1/012041 [Citations: 2]
  60. Computing two-layer SWE for simulating submarine avalanches on OpenMP

    Simanjuntak, C. A. | Gunawan, P. H.

    2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC), (2017), P.190

    https://doi.org/10.1109/ICCEREC.2017.8226698 [Citations: 9]
  61. Quantification of wave attenuation in mangroves in Manila Bay using nonlinear Shallow Water Equations

    Magdalena, Ikha | La’lang, Raynaldi | Mendoza, Renier

    Results in Applied Mathematics, Vol. 12 (2021), Iss. P.100191

    https://doi.org/10.1016/j.rinam.2021.100191 [Citations: 11]
  62. Simulating Water and Sediment Flow Using SWE-Convection Diffusion Model on OpenMP Platform

    Fakhrusy, Quedi Z. | Anggraeni, Cynthia P. | Gunawan, P. H.

    2019 7th International Conference on Information and Communication Technology (ICoICT), (2019), P.1

    https://doi.org/10.1109/ICoICT.2019.8835334 [Citations: 5]
  63. Numerical simulation of dam-break problem using staggered finite volume method

    Budiasih, L. K. | Wiryanto, L. H.

    (2016) P.050003

    https://doi.org/10.1063/1.4940835 [Citations: 4]
  64. 1D–2D Numerical Model for Wave Attenuation by Mangroves as a Porous Structure

    Magdalena, Ikha | Kusnowo, Vivianne | Azis, Moh. Ivan |

    Computation, Vol. 9 (2021), Iss. 6 P.66

    https://doi.org/10.3390/computation9060066 [Citations: 20]
  65. Transparent boundary condition for the momentum conservative scheme of the shallow water equations

    Ginting, M A | Pudjaprasetya, S R | Adytia, D | Wiryanto, L H

    IOP Conference Series: Earth and Environmental Science, Vol. 618 (2020), Iss. 1 P.012007

    https://doi.org/10.1088/1755-1315/618/1/012007 [Citations: 1]