Journals
Resources
About Us
Open Access

Sinc Nyström Method for Singularly Perturbed Love’s Integral Equation

Sinc Nyström Method for Singularly Perturbed Love’s Integral Equation

Year:    2013

East Asian Journal on Applied Mathematics, Vol. 3 (2013), Iss. 1 : pp. 48–58

Abstract

An efficient numerical method is proposed for the solution of Love’s integral equation $$f (x) + \frac{1}{π}\int_{-1}^1 \frac{c}{(x-y)^2+c^2} f (y)dy = 1, x ∈ [−1, 1]$$ where $c>0$ is a small parameter, by using a sinc Nyström method based on a double exponential transformation. The method is derived using the property that the solution $f(x)$ of Love’s integral equation satisfies $f (x) → 0.5$ for $x ∈ (−1, 1)$ when the parameter $c → 0$. Numerical results show that the proposed method is very efficient. 

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/eajam.291112.220213a

East Asian Journal on Applied Mathematics, Vol. 3 (2013), Iss. 1 : pp. 48–58

Published online:    2013-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:    Love's integral equation sinc function Nyström method DE-sinc quadrature.

  1. Parallel-in-time preconditioner for the Sinc-Nyström systems

    Liu, Jun | Wu, Shu-Lin

    SIAM Journal on Scientific Computing, Vol. 44 (2022), Iss. 4 P.A2386

    https://doi.org/10.1137/21M1462696 [Citations: 2]
  2. Preconditioned conjugate gradient methods for the solution of Love’s integral equation with very small parameter

    Lin, Fu-Rong | Shi, Yong-Jie

    Journal of Computational and Applied Mathematics, Vol. 327 (2018), Iss. P.295

    https://doi.org/10.1016/j.cam.2017.06.020 [Citations: 4]
  3. A quasi-interpolation product integration based method for solving Love’s integral equation with a very small parameter

    Barrera, D. | El Mokhtari, F. | Ibáñez, M.J. | Sbibih, D.

    Mathematics and Computers in Simulation, Vol. 172 (2020), Iss. P.213

    https://doi.org/10.1016/j.matcom.2019.12.008 [Citations: 4]
  4. Numerical treatment of the generalized Love integral equation

    Fermo, Luisa | Russo, Maria Grazia | Serafini, Giada

    Numerical Algorithms, Vol. 86 (2021), Iss. 4 P.1769

    https://doi.org/10.1007/s11075-020-00953-2 [Citations: 4]