Loading [MathJax]/jax/output/CommonHTML/jax.js
Journals
Resources
About Us
Open Access

Sinc Nyström Method for Singularly Perturbed Love’s Integral Equation

Sinc Nyström Method for Singularly Perturbed Love’s Integral Equation

Year:    2013

East Asian Journal on Applied Mathematics, Vol. 3 (2013), Iss. 1 : pp. 48–58

Abstract

An efficient numerical method is proposed for the solution of Love’s integral equation f(x)+1π11c(xy)2+c2f(y)dy=1,x[1,1] where c>0 is a small parameter, by using a sinc Nyström method based on a double exponential transformation. The method is derived using the property that the solution f(x) of Love’s integral equation satisfies f(x)0.5 for x(1,1) when the parameter c0. Numerical results show that the proposed method is very efficient. 

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/eajam.291112.220213a

East Asian Journal on Applied Mathematics, Vol. 3 (2013), Iss. 1 : pp. 48–58

Published online:    2013-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:    Love's integral equation sinc function Nyström method DE-sinc quadrature.

  1. Parallel-in-time preconditioner for the Sinc-Nyström systems

    Liu, Jun | Wu, Shu-Lin

    SIAM Journal on Scientific Computing, Vol. 44 (2022), Iss. 4 P.A2386

    https://doi.org/10.1137/21M1462696 [Citations: 2]
  2. Preconditioned conjugate gradient methods for the solution of Love’s integral equation with very small parameter

    Lin, Fu-Rong | Shi, Yong-Jie

    Journal of Computational and Applied Mathematics, Vol. 327 (2018), Iss. P.295

    https://doi.org/10.1016/j.cam.2017.06.020 [Citations: 4]
  3. A quasi-interpolation product integration based method for solving Love’s integral equation with a very small parameter

    Barrera, D. | El Mokhtari, F. | Ibáñez, M.J. | Sbibih, D.

    Mathematics and Computers in Simulation, Vol. 172 (2020), Iss. P.213

    https://doi.org/10.1016/j.matcom.2019.12.008 [Citations: 4]
  4. Numerical treatment of the generalized Love integral equation

    Fermo, Luisa | Russo, Maria Grazia | Serafini, Giada

    Numerical Algorithms, Vol. 86 (2021), Iss. 4 P.1769

    https://doi.org/10.1007/s11075-020-00953-2 [Citations: 4]