Ground States of Two-Component Bose-Einstein Condensates with an Internal Atomic Josephson Junction

Ground States of Two-Component Bose-Einstein Condensates with an Internal Atomic Josephson Junction

Year:    2011

East Asian Journal on Applied Mathematics, Vol. 1 (2011), Iss. 1 : pp. 49–81

Abstract

In this paper, we prove existence and uniqueness results for the ground states of the coupled Gross-Pitaevskii equations for describing two-component Bose-Einstein condensates with an internal atomic Josephson junction, and obtain the limiting behavior of the ground states with large parameters. Efficient and accurate numerical methods based on continuous normalized gradient flow and gradient flow with discrete normalization are presented, for computing the ground states numerically. A modified backward Euler finite difference scheme is proposed to discretize the gradient flows. Numerical results are reported, to demonstrate the efficiency and accuracy of the numerical methods and show the rich phenomena of the ground sates in the problem.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/eajam.190310.170510a

East Asian Journal on Applied Mathematics, Vol. 1 (2011), Iss. 1 : pp. 49–81

Published online:    2011-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    33

Keywords:    Bose-Einstein condensate coupled Gross-Pitaevskii equations two-component ground state normalized gradient flow internal atomic Josephson junction energy.

  1. Orbital stability of standing waves of two-component Bose–Einstein condensates with internal atomic Josephson junction

    Hajaiej, H.

    Journal of Mathematical Analysis and Applications, Vol. 420 (2014), Iss. 1 P.195

    https://doi.org/10.1016/j.jmaa.2014.04.072 [Citations: 1]
  2. Energy-Preserving DFF Scheme for the Coupled Nonlinear Schr?dinger Equations

    王, 启红

    Pure Mathematics, Vol. 12 (2022), Iss. 10 P.1720

    https://doi.org/10.12677/PM.2022.1210187 [Citations: 0]
  3. Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose–Einstein condensates

    Antoine, Xavier | Duboscq, Romain

    Journal of Computational Physics, Vol. 258 (2014), Iss. P.509

    https://doi.org/10.1016/j.jcp.2013.10.045 [Citations: 53]
  4. Mathematical theory and numerical methods for Bose-Einstein condensation

    Bao, Weizhu | Cai, Yongyong

    Kinetic & Related Models, Vol. 6 (2013), Iss. 1 P.1

    https://doi.org/10.3934/krm.2013.6.1 [Citations: 366]
  5. ASYMPTOTIC BEHAVIOR OF NONLINEAR SCHRÖDINGER SYSTEMS WITH LINEAR COUPLING

    ANTONELLI, PAOLO | WEISHÄUPL, RADA MARIA

    Journal of Hyperbolic Differential Equations, Vol. 11 (2014), Iss. 01 P.159

    https://doi.org/10.1142/S0219891614500040 [Citations: 5]
  6. Normalized solutions for a class of scalar field equations involving mixed fractional Laplacians

    Luo, Tingjian | Hajaiej, Hichem

    Advanced Nonlinear Studies, Vol. 22 (2022), Iss. 1 P.228

    https://doi.org/10.1515/ans-2022-0013 [Citations: 6]
  7. A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates

    Wang, Hanquan

    Journal of Computational Physics, Vol. 274 (2014), Iss. P.473

    https://doi.org/10.1016/j.jcp.2014.06.015 [Citations: 19]
  8. An efficient spectral method for computing dynamics of rotating two-component Bose–Einstein condensates via coordinate transformation

    Ming, Ju | Tang, Qinglin | Zhang, Yanzhi

    Journal of Computational Physics, Vol. 258 (2014), Iss. P.538

    https://doi.org/10.1016/j.jcp.2013.10.044 [Citations: 14]
  9. Blow-up solutions for two coupled Gross-Pitaevskii equations with attractive interactions

    Guo, Yujin | Zeng, Xiaoyu | Zhou, Huan-Song

    Discrete and Continuous Dynamical Systems, Vol. 37 (2017), Iss. 7 P.3749

    https://doi.org/10.3934/dcds.2017159 [Citations: 21]
  10. Limiting profiles of two-component attractive Bose-Einstein condensates passing an obstacle

    Deng, Yinbin | Guo, Yujin | Xu, Liangshun

    Science China Mathematics, Vol. 66 (2023), Iss. 8 P.1767

    https://doi.org/10.1007/s11425-022-2006-1 [Citations: 0]
  11. Nonlinear Optical and Atomic Systems

    Modeling and Computation of Bose-Einstein Condensates: Stationary States, Nucleation, Dynamics, Stochasticity

    Antoine, Xavier | Duboscq, Romain

    2015

    https://doi.org/10.1007/978-3-319-19015-0_2 [Citations: 14]
  12. Zero-momentum coupling induced transitions of ground states in Rashba spin–orbit coupled Bose–Einstein condensates

    Jin, Jingjing | Zhang, Suying | Han, Wei

    Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 47 (2014), Iss. 11 P.115302

    https://doi.org/10.1088/0953-4075/47/11/115302 [Citations: 5]
  13. BLOW-UP IN TWO-COMPONENT NONLINEAR SCHRÖDINGER SYSTEMS WITH AN EXTERNAL DRIVEN FIELD

    JÜNGEL, ANSGAR | WEISHÄUPL, RADA-MARIA

    Mathematical Models and Methods in Applied Sciences, Vol. 23 (2013), Iss. 09 P.1699

    https://doi.org/10.1142/S0218202513500206 [Citations: 13]
  14. Ground states of two-component attractive Bose–Einstein condensates I: Existence and uniqueness

    Guo, Yujin | Li, Shuai | Wei, Juncheng | Zeng, Xiaoyu

    Journal of Functional Analysis, Vol. 276 (2019), Iss. 1 P.183

    https://doi.org/10.1016/j.jfa.2018.09.015 [Citations: 36]
  15. Local uniqueness of ground states for rotating bose-einstein condensates with attractive interactions

    Guo, Yujin | Luo, Yong | Peng, Shuangjie

    Calculus of Variations and Partial Differential Equations, Vol. 60 (2021), Iss. 6

    https://doi.org/10.1007/s00526-021-02055-w [Citations: 7]
  16. GPELab, a Matlab toolbox to solve Gross–Pitaevskii equations I: Computation of stationary solutions

    Antoine, Xavier | Duboscq, Romain

    Computer Physics Communications, Vol. 185 (2014), Iss. 11 P.2969

    https://doi.org/10.1016/j.cpc.2014.06.026 [Citations: 92]
  17. Ground states of attractive Bose gases in rotating anharmonic traps

    Guo, Yujin | Li, Yan | Luo, Yong

    Journal of Functional Analysis, Vol. 286 (2024), Iss. 3 P.110243

    https://doi.org/10.1016/j.jfa.2023.110243 [Citations: 0]
  18. Optimal l ∞ error estimates of finite difference methods for the coupled Gross-Pitaevskii equations in high dimensions

    Wang, TingChun | Zhao, XiaoFei

    Science China Mathematics, Vol. 57 (2014), Iss. 10 P.2189

    https://doi.org/10.1007/s11425-014-4773-7 [Citations: 36]
  19. Ground States and Dynamics of Spin-Orbit-Coupled Bose--Einstein Condensates

    Bao, Weizhu | Cai, Yongyong

    SIAM Journal on Applied Mathematics, Vol. 75 (2015), Iss. 2 P.492

    https://doi.org/10.1137/140979241 [Citations: 34]
  20. Controlling phase separation of a two-component Bose-Einstein condensate by confinement

    Wen, L. | Liu, W. M. | Cai, Yongyong | Zhang, J. M. | Hu, Jiangping

    Physical Review A, Vol. 85 (2012), Iss. 4

    https://doi.org/10.1103/PhysRevA.85.043602 [Citations: 70]
  21. The nonexistence of vortices for rotating Bose-Einstein condensates in non-radially symmetric traps

    Guo, Yujin

    Journal de Mathématiques Pures et Appliquées, Vol. 170 (2023), Iss. P.1

    https://doi.org/10.1016/j.matpur.2022.12.001 [Citations: 3]
  22. Efficient spectral computation of the stationary states of rotating Bose–Einstein condensates by preconditioned nonlinear conjugate gradient methods

    Antoine, Xavier | Levitt, Antoine | Tang, Qinglin

    Journal of Computational Physics, Vol. 343 (2017), Iss. P.92

    https://doi.org/10.1016/j.jcp.2017.04.040 [Citations: 61]
  23. A Regularized Newton Method for Computing Ground States of Bose–Einstein Condensates

    Wu, Xinming | Wen, Zaiwen | Bao, Weizhu

    Journal of Scientific Computing, Vol. 73 (2017), Iss. 1 P.303

    https://doi.org/10.1007/s10915-017-0412-0 [Citations: 34]
  24. L2normalized solutions for nonlinear Schrödinger systems inR3

    Lu, Lu

    Nonlinear Analysis, Vol. 191 (2020), Iss. P.111621

    https://doi.org/10.1016/j.na.2019.111621 [Citations: 4]
  25. A numerical study of vortex nucleation in 2D rotating Bose–Einstein condensates

    Dujardin, Guillaume | Lacroix-Violet, Ingrid | Nahas, Anthony

    Mathematics and Computers in Simulation, Vol. 229 (2025), Iss. P.409

    https://doi.org/10.1016/j.matcom.2024.09.029 [Citations: 0]
  26. BEC2HPC: A HPC spectral solver for nonlinear Schrödinger and rotating Gross-Pitaevskii equations. Stationary states computation

    Gaidamour, Jérémie | Tang, Qinglin | Antoine, Xavier

    Computer Physics Communications, Vol. 265 (2021), Iss. P.108007

    https://doi.org/10.1016/j.cpc.2021.108007 [Citations: 7]
  27. Ground States of Two-Component Bose–Einstein Condensates with Josephson Junction: The Endpoint Cases

    Peng, Wenshuai | Wang, Zhengping | Zeng, Xiaoyu | Zhou, Huan-Song

    SIAM Journal on Mathematical Analysis, Vol. 56 (2024), Iss. 6 P.6963

    https://doi.org/10.1137/23M1613323 [Citations: 0]
  28. A robust and efficient numerical method to compute the dynamics of the rotating two-component dipolar Bose–Einstein condensates

    Tang, Qinglin | Zhang, Yong | Mauser, Norbert J.

    Computer Physics Communications, Vol. 219 (2017), Iss. P.223

    https://doi.org/10.1016/j.cpc.2017.05.022 [Citations: 6]
  29. Harmonically trapped attractive and repulsive spin–orbit and Rabi coupled Bose–Einstein condensates

    Chiquillo, Emerson

    Journal of Physics A: Mathematical and Theoretical, Vol. 50 (2017), Iss. 10 P.105001

    https://doi.org/10.1088/1751-8121/aa59c1 [Citations: 9]
  30. Computing ground states of Bose-Einstein condensation by normalized deep neural network

    Bao, Weizhu | Chang, Zhipeng | Zhao, Xiaofei

    Journal of Computational Physics, Vol. 520 (2025), Iss. P.113486

    https://doi.org/10.1016/j.jcp.2024.113486 [Citations: 0]
  31. Coupled Nonlinear Schrödinger Equations with a Gauge Potential: Existence and Blowup

    Dias, João‐Paulo | Figueira, Mário | Konotop, Vladimir V.

    Studies in Applied Mathematics, Vol. 136 (2016), Iss. 3 P.241

    https://doi.org/10.1111/sapm.12102 [Citations: 10]
  32. Ground states of two-component Bose–Einstein condensates passing an obstacle

    Xu, Liangshun

    Journal of Mathematical Physics, Vol. 61 (2020), Iss. 6

    https://doi.org/10.1063/5.0004998 [Citations: 1]
  33. Gross–Pitaevskii–Poisson Equations for Dipolar Bose–Einstein Condensate with Anisotropic Confinement

    Bao, Weizhu | Abdallah, Naoufel Ben | Cai, Yongyong

    SIAM Journal on Mathematical Analysis, Vol. 44 (2012), Iss. 3 P.1713

    https://doi.org/10.1137/110850451 [Citations: 21]
  34. Time-splitting Galerkin method for spin–orbit-coupled Bose–Einstein condensates

    Gao, Yali | Mei, Liquan

    Computers & Mathematics with Applications, Vol. 87 (2021), Iss. P.77

    https://doi.org/10.1016/j.camwa.2021.02.009 [Citations: 1]
  35. The Nonexistence of Vortices for Rotating Bose–Einstein Condensates with Attractive Interactions

    Guo, Yujin | Luo, Yong | Yang, Wen

    Archive for Rational Mechanics and Analysis, Vol. 238 (2020), Iss. 3 P.1231

    https://doi.org/10.1007/s00205-020-01564-w [Citations: 20]
  36. Ground State of Rotating Bose Einstein Condensates under Attractive Force

    张, 萌

    Pure Mathematics, Vol. 12 (2022), Iss. 04 P.610

    https://doi.org/10.12677/PM.2022.124069 [Citations: 0]
  37. A conservative sine pseudo-spectral-difference method for multi-dimensional coupled Gross–Pitaevskii equations

    Li, Xin | Zhang, Luming

    Advances in Computational Mathematics, Vol. 46 (2020), Iss. 2

    https://doi.org/10.1007/s10444-020-09769-z [Citations: 7]
  38. Efficient SAV approach for imaginary time gradient flows with applications to one- and multi-component Bose-Einstein Condensates

    Zhuang, Qingqu | Shen, Jie

    Journal of Computational Physics, Vol. 396 (2019), Iss. P.72

    https://doi.org/10.1016/j.jcp.2019.06.043 [Citations: 32]
  39. A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates

    Lin, Liren | Chern, I-Liang

    Discrete & Continuous Dynamical Systems - B, Vol. 19 (2014), Iss. 4 P.1119

    https://doi.org/10.3934/dcdsb.2014.19.1119 [Citations: 3]
  40. A linearized, decoupled, and energy‐preserving compact finite difference scheme for the coupled nonlinear Schrödinger equations

    Wang, Tingchun

    Numerical Methods for Partial Differential Equations, Vol. 33 (2017), Iss. 3 P.840

    https://doi.org/10.1002/num.22125 [Citations: 19]
  41. Uniform point-wise error estimates of semi-implicit compact finite difference methods for the nonlinear Schrödinger equation perturbed by wave operator

    Wang, Tingchun

    Journal of Mathematical Analysis and Applications, Vol. 422 (2015), Iss. 1 P.286

    https://doi.org/10.1016/j.jmaa.2014.08.026 [Citations: 20]
  42. Ground states of two-component condensates in a harmonic plus Gaussian trap

    Mason, Peter

    The European Physical Journal B, Vol. 86 (2013), Iss. 11

    https://doi.org/10.1140/epjb/e2013-40665-2 [Citations: 6]
  43. Newton-Based Alternating Methods for the Ground State of a Class of Multicomponent Bose–Einstein Condensates

    Huang, Pengfei | Yang, Qingzhi

    SIAM Journal on Optimization, Vol. 34 (2024), Iss. 3 P.3136

    https://doi.org/10.1137/23M1580346 [Citations: 0]
  44. Collective synchronization of the multi-component Gross–Pitaevskii–Lohe system

    Bao, Weizhu | Ha, Seung-Yeal | Kim, Dohyun | Tang, Qinglin

    Physica D: Nonlinear Phenomena, Vol. 400 (2019), Iss. P.132158

    https://doi.org/10.1016/j.physd.2019.132158 [Citations: 5]
  45. Blow up threshold for the Gross–Pitaevskii system with combined nonlocal nonlinearities

    Liu, Baiyu | Ma, Li

    Journal of Mathematical Analysis and Applications, Vol. 425 (2015), Iss. 2 P.1214

    https://doi.org/10.1016/j.jmaa.2015.01.036 [Citations: 2]
  46. Blow-up profile of 2D focusing mixture Bose gases

    Nguyen, Dinh-Thi

    Zeitschrift für angewandte Mathematik und Physik, Vol. 71 (2020), Iss. 3

    https://doi.org/10.1007/s00033-020-01302-y [Citations: 2]
  47. Acceleration of the imaginary time method for spectrally computing the stationary states of Gross–Pitaevskii equations

    Antoine, Xavier | Besse, Christophe | Duboscq, Romain | Rispoli, Vittorio

    Computer Physics Communications, Vol. 219 (2017), Iss. P.70

    https://doi.org/10.1016/j.cpc.2017.05.008 [Citations: 11]
  48. Ground states of Bose–Einstein condensates with higher order interaction

    Bao, Weizhu | Cai, Yongyong | Ruan, Xinran

    Physica D: Nonlinear Phenomena, Vol. 386-387 (2019), Iss. P.38

    https://doi.org/10.1016/j.physd.2018.08.006 [Citations: 5]
  49. Comparison of Splitting Methods for Deterministic/Stochastic Gross–Pitaevskii Equation

    Geiser, Jürgen | Nasari, Amirbahador

    Mathematical and Computational Applications, Vol. 24 (2019), Iss. 3 P.76

    https://doi.org/10.3390/mca24030076 [Citations: 2]
  50. Projection gradient method for energy functional minimization with a constraint and its application to computing the ground state of spin–orbit-coupled Bose–Einstein condensates

    Wang, Hanquan | Xu, Zhiguo

    Computer Physics Communications, Vol. 185 (2014), Iss. 11 P.2803

    https://doi.org/10.1016/j.cpc.2014.05.007 [Citations: 4]
  51. Matter-waves in Bose–Einstein condensates with spin-orbit and Rabi couplings

    Chiquillo, Emerson

    Journal of Physics A: Mathematical and Theoretical, Vol. 48 (2015), Iss. 47 P.475001

    https://doi.org/10.1088/1751-8113/48/47/475001 [Citations: 7]
  52. NOTE ON THE GROUND STATES OF TWO-COMPONENT BOSE-EINSTEIN CONDENSATES WITH AN INTERNAL ATOMIC JOSEPHSON JUNCTION

    Lu, Zhongxue | Liu, Zuhan

    Bulletin of the Korean Mathematical Society, Vol. 50 (2013), Iss. 5 P.1441

    https://doi.org/10.4134/BKMS.2013.50.5.1441 [Citations: 0]
  53. Analysis and Computation for Ground State Solutions of Bose--Fermi Mixtures at Zero Temperature

    Cai, Yongyong | Wang, Hanquan

    SIAM Journal on Applied Mathematics, Vol. 73 (2013), Iss. 2 P.757

    https://doi.org/10.1137/120873820 [Citations: 4]
  54. Optimal Point-Wise Error Estimate of a Compact Difference Scheme for the Coupled Gross–Pitaevskii Equations in One Dimension

    Wang, Tingchun

    Journal of Scientific Computing, Vol. 59 (2014), Iss. 1 P.158

    https://doi.org/10.1007/s10915-013-9757-1 [Citations: 47]