A Stabilizer Free Weak Galerkin Finite Element Method for General Second-Order Elliptic Problem

A Stabilizer Free Weak Galerkin Finite Element Method for General Second-Order Elliptic Problem

Year:    2021

Author:    Ahmed AL-Taweel, Saqib Hussain, Runchang Lin, Peng Zhu

International Journal of Numerical Analysis and Modeling, Vol. 18 (2021), Iss. 3 : pp. 311–323

Abstract

This paper proposes a stabilizer free weak Galerkin (SFWG) finite element method for the convection-diffusion-reaction equation in the diffusion-dominated regime. The object of using the SFWG method is to obtain a simple formulation which makes the SFWG algorithm (9) more efficient and the numerical programming easier. The optimal rates of convergence of numerical errors of $\mathcal{O}(h^k)$ in $H^1$ and $\mathcal{O}(h^{k+1})$ in $L^2$ norms are achieved under conditions $( P_k(K), P_k(e), [P_j (K)]^2 )$ , $j = k + 1$, $k = 1, 2$ finite element spaces. Numerical experiments are reported to verify the accuracy and efficiency of the SFWG method.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2021-IJNAM-18725

International Journal of Numerical Analysis and Modeling, Vol. 18 (2021), Iss. 3 : pp. 311–323

Published online:    2021-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    13

Keywords:    Stabilizer free weak Galerkin methods weak Galerkin finite element methods weak gradient error estimates.

Author Details

Ahmed AL-Taweel

Saqib Hussain

Runchang Lin

Peng Zhu