Fast Gauss-Related Quadrature for Highly Oscillatory Integrals with Logarithm and Cauchy-Logarithmic Type Singularities
Year: 2021
Author: Idrissa Kayijuka, Serife Muge Ege, Fatma Serap Topal, Ali Konuralp
International Journal of Numerical Analysis and Modeling, Vol. 18 (2021), Iss. 4 : pp. 442–457
Abstract
This paper presents an efficient method for the computation of two highly oscillatory integrals having logarithmic and Cauchy-logarithmic singularities. This approach first requires the transformation of the original oscillatory integrals into a sum of line integrals with semi-infinite intervals. Afterwards, the coefficients of the three-term recurrence relation that satisfy the orthogonal polynomial are obtained by using the method based on moments, where classical Laguerre and Gautschi's logarithmic weight functions are employed. The algorithm reveals that with fixed $n$, the method is capable of achieving significant figures within a short time. Furthermore, the approach yields higher accuracy as the frequency increases. The results of numerical experiments are given to substantiate our theoretical analysis.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2021-IJNAM-19115
International Journal of Numerical Analysis and Modeling, Vol. 18 (2021), Iss. 4 : pp. 442–457
Published online: 2021-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 16
Keywords: Highly oscillatory integrals modified Chebyshev algorithm steepest descent method Cauchy principal value integrals logarithmic weight function algebraic and logarithm singular integrals.