An Optimal a Posteriori Error Estimates of the Local Discontinuous Galerkin Method for the Second-Order Wave Equation in One Space Dimension
Year: 2017
International Journal of Numerical Analysis and Modeling, Vol. 14 (2017), Iss. 3 : pp. 355–380
Abstract
In this paper, we provide the optimal convergence rate of a posteriori error estimates for the local discontinuous Galerkin (LDG) method for the second-order wave equation in one space dimension. One of the key ingredients in our analysis is the recent optimal superconvergence result in [W. Cao, D. Li and Z. Zhang, Commun. Comput. Phys. 21 (1) (2017) 211-236]. We first prove that the LDG solution and its spatial derivative, respectively, converge in the L2-norm to (p+1)-degree right and left Radau interpolating polynomials under mesh refinement. The order of convergence is proved to be p+2, when piecewise polynomials of degree at most p are used. We use these results to show that the leading error terms on each element for the solution and its derivative are proportional to (p+1)-degree right and left Radau polynomials. These new results enable us to construct residual-based a posteriori error estimates of the spatial errors. We further prove that, for smooth solutions, these a posteriori LDG error estimates converge, at a fixed time, to the true spatial errors in the L2-norm at O(hp+2) rate. Finally, we show that the global effectivity indices in the L2-norm converge to unity at O(h) rate. The current results improve upon our previously published work in which the order of convergence for the a posteriori error estimates and the global effectivity index are proved to be p+3/2 and 1/2, respectively. Our proofs are valid for arbitrary regular meshes using Pp polynomials with p≥1. Several numerical experiments are performed to validate the theoretical results.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2017-IJNAM-10012
International Journal of Numerical Analysis and Modeling, Vol. 14 (2017), Iss. 3 : pp. 355–380
Published online: 2017-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 26
Keywords: Local discontinuous Galerkin method second-order wave equation superconvergence Radau points a posteriori error estimation.