Analysis of an Embedded Discontinuous Galerkin Method with Implicit-Explicit Time-Marching for Convection-Diffusion Problems
Year: 2017
International Journal of Numerical Analysis and Modeling, Vol. 14 (2017), Iss. 4-5 : pp. 477–499
Abstract
In this paper, we analyze implicit-explicit (IMEX) Runge-Kutta (RK) time discretization methods for solving linear convection-diffusion equations. The diffusion operator is treated implicitly via the embedded discontinuous Galerkin (EDG) method and the convection operator explicitly via the upwinding discontinuous Galerkin method.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2017-IJNAM-10045
International Journal of Numerical Analysis and Modeling, Vol. 14 (2017), Iss. 4-5 : pp. 477–499
Published online: 2017-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 23
Keywords: Embedded discontinuous Galerkin method upwinding discontinuous Galerkin method implicit-explicit Runge-Kutta time-marching scheme convection-diffusion equation stability error estimate energy method.