A Posteriori Error Estimates of Finite Volume Element Method for Second-Order Quasilinear Elliptic Problems

A Posteriori Error Estimates of Finite Volume Element Method for Second-Order Quasilinear Elliptic Problems

Year:    2016

International Journal of Numerical Analysis and Modeling, Vol. 13 (2016), Iss. 1 : pp. 22–40

Abstract

In this paper, we consider the a posteriori error estimates of the finite volume element method for the general second-order quasilinear elliptic problems over a convex polygonal domain in the plane, propose a residual-based error estimator and derive the global upper and local lower bounds on the approximation error in the $H^1$-norm. Moreover, for some special quasilinear elliptic problems, we propose a residual-based a posteriori error estimator and derive the global upper bound on the error in the $L^2$-norm. Numerical experiments are also provided to verify our theoretical results.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2016-IJNAM-424

International Journal of Numerical Analysis and Modeling, Vol. 13 (2016), Iss. 1 : pp. 22–40

Published online:    2016-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    19

Keywords:    quasilinear elliptic problem finite volume element method a posteriori error estimates.