An Anisotropic Nonconforming Element for Fourth Order Elliptic Singular Perturbation Problem

An Anisotropic Nonconforming Element for Fourth Order Elliptic Singular Perturbation Problem

Year:    2010

International Journal of Numerical Analysis and Modeling, Vol. 7 (2010), Iss. 4 : pp. 766–784

Abstract

A new nonconforming element constructed by the Double Set Parameter method, is applied to the fourth order elliptic singular perturbation problem. The convergence uniformly in the perturbation parameter $\varepsilon$, is proved under the anisotropic meshes and optimal convergence rate $O(h)$ is obtained. Numerical results are given to demonstrate validity of our theoretical analysis.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2010-IJNAM-751

International Journal of Numerical Analysis and Modeling, Vol. 7 (2010), Iss. 4 : pp. 766–784

Published online:    2010-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    19

Keywords:    Nonconforming finite element Double set parameter method Anisotropic Fourth order elliptic singular perturbation problem Uniform convergence.