Year: 2006
Author: Emmanuil H. Georgoulis
International Journal of Numerical Analysis and Modeling, Vol. 3 (2006), Iss. 1 : pp. 52–79
Abstract
We consider the $hp$-version interior penalty discontinuous Galerkin finite element method ($hp$-DGFEM) for linear second-order elliptic reaction-diffusion-advection equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the extension of the error analysis of the $hp$-DGFEM to the case when anisotropic (shape-irregular) elements and anisotropic polynomial degrees are used. For this purpose, extensions of well known approximation theory results are derived. In particular, new error bounds for the approximation error of the $L^2$-and $H^1$-projection operators are presented, as well as generalizations of existing inverse inequalities to the anisotropic setting. Equipped with these theoretical developments, we derive general error bounds for the $hp$-DGFEM on anisotropic meshes, and anisotropic polynomial degrees. Moreover, an improved choice for the (user-defined) discontinuity-penalisation parameter of the method is proposed, which takes into account the anisotropy of the mesh. These results collapse to previously known ones when applied to problems on shape-regular elements. The theoretical findings are justified by numerical experiments, indicating that the use of anisotropic elements, together with our newly suggested choice of the discontinuity-penalisation parameter, improves the stability, the accuracy and the efficiency of the method.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2006-IJNAM-889
International Journal of Numerical Analysis and Modeling, Vol. 3 (2006), Iss. 1 : pp. 52–79
Published online: 2006-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 28
Keywords: discontinuous Galerkin finite element methods anisotropic meshes equations with non-negative characteristics form.