Polynomial Preserving Gradient Recovery and a Posteriori Estimate for Bilinear Element on Irregular Quadrilaterals

Polynomial Preserving Gradient Recovery and a Posteriori Estimate for Bilinear Element on Irregular Quadrilaterals

Year:    2004

Author:    Zhimin Zhang

International Journal of Numerical Analysis and Modeling, Vol. 1 (2004), Iss. 1 : pp. 1–24

Abstract

A polynomial preserving gradient recovery method is proposed and analyzed for bilinear element under quadrilateral meshes. It has been proven that the recovered gradient converges at a rate $O(h^{1+\rho})$ for $\rho = min(\alpha, 1)$, when the mesh is distorted $O(h^{1+\alpha})$ ($\alpha > 0$) from a regular one. Consequently, the a posteriori error estimator based on the recovered gradient is asymptotically exact.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ijnam.OA-2004-1101

International Journal of Numerical Analysis and Modeling, Vol. 1 (2004), Iss. 1 : pp. 1–24

Published online:    2004-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    24

Keywords:    Finite element method quadrilateral mesh gradient recovery superconvergence a posteriori error estimate.

Author Details

Zhimin Zhang

  1. Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems

    Song, Lunji | Zhang, Zhimin

    Discrete and Continuous Dynamical Systems - Series B, Vol. 20 (2015), Iss. 5 P.1405

    https://doi.org/10.3934/dcdsb.2015.20.1405 [Citations: 4]
  2. Can We Have Superconvergent Gradient Recovery Under Adaptive Meshes?

    Wu, Haijun | Zhang, Zhimin

    SIAM Journal on Numerical Analysis, Vol. 45 (2007), Iss. 4 P.1701

    https://doi.org/10.1137/060661430 [Citations: 36]
  3. Enhancing Eigenvalue Approximation by Gradient Recovery

    Naga, Ahmed | Zhang, Zhimin | Zhou, Aihui

    SIAM Journal on Scientific Computing, Vol. 28 (2006), Iss. 4 P.1289

    https://doi.org/10.1137/050640588 [Citations: 29]
  4. Convergence Analysis of a Discontinuous Galerkin Method for Wave Equations in Second-Order Form

    Du, Yu | Zhang, Lu | Zhang, Zhimin

    SIAM Journal on Numerical Analysis, Vol. 57 (2019), Iss. 1 P.238

    https://doi.org/10.1137/18M1190495 [Citations: 4]
  5. A Type of Finite Element Gradient Recovery Method based on Vertex-Edge-Face Interpolation: The Recovery Technique and Superconvergence Property

    Lin, Qun | Xie, Hehu

    East Asian Journal on Applied Mathematics, Vol. 1 (2011), Iss. 3 P.248

    https://doi.org/10.4208/eajam.251210.250411a [Citations: 0]
  6. Flow past circular cylinders in tandem: a comparison between LES and IDDES

    Ilie, Marcel | Harris, Keaton

    2018 Fluid Dynamics Conference, (2018),

    https://doi.org/10.2514/6.2018-3234 [Citations: 0]
  7. A lowest-degree quasi-conforming finite element de Rham complex on general quadrilateral grids by piecewise polynomials

    Quan, Qimeng | Ji, Xia | Zhang, Shuo

    Calcolo, Vol. 59 (2022), Iss. 1

    https://doi.org/10.1007/s10092-021-00447-0 [Citations: 0]
  8. A stencil-like volume of fluid (VOF) method for tracking free interface

    Li, Xiao-wei | Fan, Jun-fei

    Applied Mathematics and Mechanics, Vol. 29 (2008), Iss. 7 P.881

    https://doi.org/10.1007/s10483-008-0706-7 [Citations: 5]
  9. On piecewise constant level-set (PCLS) methods for the identification of discontinuous parameters in ill-posed problems

    De Cezaro, A | Leitão, A | Tai, X-C

    Inverse Problems, Vol. 29 (2013), Iss. 1 P.015003

    https://doi.org/10.1088/0266-5611/29/1/015003 [Citations: 8]
  10. Optimal Quadrilateral Finite Elements on Polygonal Domains

    Li, Hengguang | Zhang, Qinghui

    Journal of Scientific Computing, Vol. 70 (2017), Iss. 1 P.60

    https://doi.org/10.1007/s10915-016-0242-5 [Citations: 3]
  11. Superconvergence analysis of the linear finite element method and a gradient recovery postprocessing on anisotropic meshes

    Cao, Weiming

    Mathematics of Computation, Vol. 84 (2014), Iss. 291 P.89

    https://doi.org/10.1090/S0025-5718-2014-02846-9 [Citations: 6]
  12. Finite Element Model for Linear Elastic Thick Shells Using Gradient Recovery Method

    Feumo, Achille Germain | Nzengwa, Robert | Nkongho Anyi, Joseph | Sheikholeslami, Mohsen

    Mathematical Problems in Engineering, Vol. 2017 (2017), Iss. 1

    https://doi.org/10.1155/2017/5903503 [Citations: 4]
  13. On a new edge‐based gradient recovery technique

    Pouliot, B. | Fortin, M. | Fortin, A. | Chamberland, É.

    International Journal for Numerical Methods in Engineering, Vol. 93 (2013), Iss. 1 P.52

    https://doi.org/10.1002/nme.4374 [Citations: 3]
  14. A triangular spectral element method for elliptic and Stokes problems

    Li, Jingliang | Ma, Heping | Li, Huiyuan

    Applied Mathematics and Computation, Vol. 321 (2018), Iss. P.195

    https://doi.org/10.1016/j.amc.2017.10.025 [Citations: 2]
  15. A Runge–Kutta discontinuous Galerkin method for linear free-surface gravity waves using high order velocity recovery

    Tomar, S.K. | van der Vegt, J.J.W.

    Computer Methods in Applied Mechanics and Engineering, Vol. 196 (2007), Iss. 13-16 P.1984

    https://doi.org/10.1016/j.cma.2006.11.007 [Citations: 3]
  16. Development of Methods of Asymptotic Analysis of Transition Layers in Reaction–Diffusion–Advection Equations: Theory and Applications

    Nefedov, N. N.

    Computational Mathematics and Mathematical Physics, Vol. 61 (2021), Iss. 12 P.2068

    https://doi.org/10.1134/S0965542521120095 [Citations: 40]
  17. On the Interpolation Error Estimates for $Q_1$ Quadrilateral Finite Elements

    Mao, Shipeng | Nicaise, Serge | Shi, Zhong-Ci

    SIAM Journal on Numerical Analysis, Vol. 47 (2009), Iss. 1 P.467

    https://doi.org/10.1137/070700486 [Citations: 6]
  18. Supercloseness of Linear DG-FEM and Its Superconvergence Based on the Polynomial Preserving Recovery for Helmholtz Equation

    Du, Yu | Zhang, Zhimin

    Journal of Scientific Computing, Vol. 79 (2019), Iss. 3 P.1713

    https://doi.org/10.1007/s10915-019-00906-5 [Citations: 2]
  19. Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method

    Bai, YanHong | Wu, YongKe | Xie, XiaoPing

    Science China Mathematics, Vol. 59 (2016), Iss. 9 P.1835

    https://doi.org/10.1007/s11425-016-5144-3 [Citations: 19]
  20. Numerical studies of a buoy system; a comparison between LES and SAS

    Ilie, Marcel | Harris, Keaton

    2018 Fluid Dynamics Conference, (2018),

    https://doi.org/10.2514/6.2018-3537 [Citations: 0]
  21. Assessment of Numerical Treatments in Interface Capturing Simulations for Surface-Tension-Driven Interface Motion

    Dhar, Abhinav | Shimada, Naoki | Hayashi, Kosuke | Tomiyama, Akio

    The Journal of Computational Multiphase Flows, Vol. 7 (2015), Iss. 1 P.15

    https://doi.org/10.1260/1757-482X.7.1.15 [Citations: 1]
  22. Spectral method on quadrilaterals

    Ben-yu, Guo | Hong-li, Jia

    Mathematics of Computation, Vol. 79 (2010), Iss. 272 P.2237

    https://doi.org/10.1090/S0025-5718-10-02329-X [Citations: 25]
  23. A simple and effective gradient recovery scheme and a posteriori error estimator for the Virtual Element Method (VEM)

    Chi, Heng | Beirão da Veiga, Lourenço | Paulino, Glaucio H.

    Computer Methods in Applied Mechanics and Engineering, Vol. 347 (2019), Iss. P.21

    https://doi.org/10.1016/j.cma.2018.08.014 [Citations: 38]
  24. Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems

    Zhang, Zhimin | Zou, Qingsong

    Numerische Mathematik, Vol. 130 (2015), Iss. 2 P.363

    https://doi.org/10.1007/s00211-014-0664-7 [Citations: 56]