Long-Time Oscillatory Energy Conservation of Total Energy-Preserving Methods for Highly Oscillatory Hamiltonian Systems

Long-Time Oscillatory Energy Conservation of Total Energy-Preserving Methods for Highly Oscillatory Hamiltonian Systems

Year:    2022

Author:    Bin Wang, Xinyuan Wu

Journal of Computational Mathematics, Vol. 40 (2022), Iss. 1 : pp. 70–88

Abstract

For an integrator when applied to a highly oscillatory system, the near conservation of the oscillatory energy over long times is an important aspect. In this paper, we study the long-time near conservation of oscillatory energy for the adapted average vector field (AAVF) method when applied to highly oscillatory Hamiltonian systems. This AAVF method is an extension of the average vector field method and preserves the total energy of highly oscillatory Hamiltonian systems exactly. This paper is devoted to analysing another important property of AAVF method, i.e., the near conservation of its oscillatory energy in a long term. The long-time oscillatory energy conservation is obtained via constructing a modulated Fourier expansion of the AAVF method and deriving an almost invariant of the expansion. A similar result of the method in the multi-frequency case is also presented in this paper.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.2008-m2018-0218

Journal of Computational Mathematics, Vol. 40 (2022), Iss. 1 : pp. 70–88

Published online:    2022-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    19

Keywords:    Highly oscillatory Hamiltonian systems Modulated Fourier expansion AAVF method Energy-preserving methods Long-time oscillatory Energy conservation.

Author Details

Bin Wang

Xinyuan Wu