A Two-Grid Finite Element Approximation for Nonlinear Time Fractional Two-Term Mixed Sub-Diffusion and Diffusion Wave Equations
Year: 2022
Author: Yanping Chen, Qiling Gu, Qingfeng Li, Yunqing Huang
Journal of Computational Mathematics, Vol. 40 (2022), Iss. 6 : pp. 936–954
Abstract
In this paper, we develop a two-grid method (TGM) based on the FEM for 2D nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations. A two-grid algorithm is proposed for solving the nonlinear system, which consists of two steps: a nonlinear FE system is solved on a coarse grid, then the linearized FE system is solved on the fine grid by Newton iteration based on the coarse solution. The fully discrete numerical approximation is analyzed, where the Galerkin finite element method for the space derivatives and the finite difference scheme for the time Caputo derivative with order $\alpha\in(1,2)$ and $\alpha_{1}\in(0,1)$. Numerical stability and optimal error estimate $O(h^{r+1}+H^{2r+2}+\tau^{\min\{3-\alpha,2-\alpha_{1}\}})$ in $L^{2}$-norm are presented for two-grid scheme, where $t,$ $H$ and $h$ are the time step size, coarse grid mesh size and fine grid mesh size, respectively. Finally, numerical experiments are provided to confirm our theoretical results and effectiveness of the proposed algorithm.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jcm.2104-m2021-0332
Journal of Computational Mathematics, Vol. 40 (2022), Iss. 6 : pp. 936–954
Published online: 2022-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 19
Keywords: Two-grid method Finite element method Nonlinear time fractional mixed sub-diffusion and diffusion-wave equations L1-CN scheme Stability and convergence.