Year: 2020
Author: Carsten Carstensen, Sophie Puttkammer
Journal of Computational Mathematics, Vol. 38 (2020), Iss. 1 : pp. 142–175
Abstract
Optimal convergence rates of adaptive finite element methods are well understood in terms of the axioms of adaptivity. One key ingredient is the discrete reliability of a residual-based a posteriori error estimator, which controls the error of two discrete finite element solutions based on two nested triangulations. In the error analysis of nonconforming finite element methods, like the Crouzeix-Raviart or Morley finite element schemes, the difference of the piecewise derivatives of discontinuous approximations to the distributional gradients of global Sobolev functions plays a dominant role and is the object of this paper. The nonconforming interpolation operator, which comes naturally with the definition of the aforementioned nonconforming finite element in the sense of Ciarlet, allows for stability and approximation properties that enable direct proofs of the reliability for the residual that monitors the equilibrium condition. The novel approach of this paper is the suggestion of a right-inverse of this interpolation operator in conforming piecewise polynomials to design a nonconforming approximation of a given coarse-grid approximation on a refined triangulation. The results of this paper allow for simple proofs of the discrete reliability in any space dimension and multiply connected domains on general shape-regular triangulations beyond newest-vertex bisection of simplices. Particular attention is on optimal constants in some standard discrete estimates listed in the appendices.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jcm.1908-m2018-0174
Journal of Computational Mathematics, Vol. 38 (2020), Iss. 1 : pp. 142–175
Published online: 2020-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 34
Keywords: Discrete reliability Nonconforming finite element method Conforming companion Morley Crouzeix-Raviart Explicit constants Axioms of adaptivity.
Author Details
-
Nonconforming Virtual Elements for the Biharmonic Equation with Morley Degrees of Freedom on Polygonal Meshes
Carstensen, Carsten | Khot, Rekha | Pani, Amiya K.SIAM Journal on Numerical Analysis, Vol. 61 (2023), Iss. 5 P.2460
https://doi.org/10.1137/22M1496761 [Citations: 2] -
Adaptive hybrid high-order method for guaranteed lower eigenvalue bounds
Carstensen, Carsten | Gräßle, Benedikt | Tran, Ngoc TienNumerische Mathematik, Vol. 156 (2024), Iss. 3 P.813
https://doi.org/10.1007/s00211-024-01407-w [Citations: 1] -
Convergent adaptive hybrid higher-order schemes for convex minimization
Carstensen, Carsten | Tran, Ngoc TienNumerische Mathematik, Vol. 151 (2022), Iss. 2 P.329
https://doi.org/10.1007/s00211-022-01284-1 [Citations: 1] -
Unified a priori analysis of four second-order FEM for fourth-order quadratic semilinear problems
Carstensen, Carsten | Nataraj, Neela | Remesan, Gopikrishnan C. | Shylaja, DevikaNumerische Mathematik, Vol. 154 (2023), Iss. 3-4 P.323
https://doi.org/10.1007/s00211-023-01356-w [Citations: 2] -
A Priori and a Posteriori Error Analysis of the Crouzeix–Raviart and Morley FEM with Original and Modified Right-Hand Sides
Carstensen, Carsten | Nataraj, NeelaComputational Methods in Applied Mathematics, Vol. 21 (2021), Iss. 2 P.289
https://doi.org/10.1515/cmam-2021-0029 [Citations: 12] -
Convergence of Adaptive Crouzeix–Raviart and Morley FEM for Distributed Optimal Control Problems
Dond, Asha K. | Nataraj, Neela | Nayak, SubhamComputational Methods in Applied Mathematics, Vol. 24 (2024), Iss. 3 P.599
https://doi.org/10.1515/cmam-2023-0083 [Citations: 1] -
Adaptive Morley FEM for the von Kármán Equations with Optimal Convergence Rates
Carstensen, Carsten | Nataraj, NeelaSIAM Journal on Numerical Analysis, Vol. 59 (2021), Iss. 2 P.696
https://doi.org/10.1137/20M1335613 [Citations: 10] -
Morley finite element method for the von Kármán obstacle problem
Carstensen, Carsten | Gaddam, Sharat | Nataraj, Neela | Pani, Amiya K. | Shylaja, DevikaESAIM: Mathematical Modelling and Numerical Analysis, Vol. 55 (2021), Iss. 5 P.1873
https://doi.org/10.1051/m2an/2021042 [Citations: 1] -
Minimal residual methods in negative or fractional Sobolev norms
Monsuur, Harald | Stevenson, Rob | Storn, JohannesMathematics of Computation, Vol. 93 (2023), Iss. 347 P.1027
https://doi.org/10.1090/mcom/3904 [Citations: 4] -
Direct Guaranteed Lower Eigenvalue Bounds with Optimal a Priori Convergence Rates for the Bi-Laplacian
Carstensen, Carsten | Puttkammer, SophieSIAM Journal on Numerical Analysis, Vol. 61 (2023), Iss. 2 P.812
https://doi.org/10.1137/21M139921X [Citations: 5] -
A posteriori error analysis for a distributed optimal control problem governed by the von Kármán equations
Chowdhury, Sudipto | Dond, Asha K. | Nataraj, Neela | Shylaja, DevikaESAIM: Mathematical Modelling and Numerical Analysis, Vol. 56 (2022), Iss. 5 P.1655
https://doi.org/10.1051/m2an/2022040 [Citations: 1] -
Unifying a posteriori error analysis of five piecewise quadratic discretisations for the biharmonic equation
Carstensen, Carsten | Gräßle, Benedikt | Nataraj, NeelaJournal of Numerical Mathematics, Vol. 0 (2023), Iss. 0
https://doi.org/10.1515/jnma-2022-0092 [Citations: 0] -
Conforming and nonconforming finite element methods for biharmonic inverse source problem
Nair, M Thamban | Shylaja, DevikaInverse Problems, Vol. 38 (2022), Iss. 2 P.025001
https://doi.org/10.1088/1361-6420/ac3ec5 [Citations: 1] -
Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates
Carstensen, Carsten | Puttkammer, SophieNumerische Mathematik, Vol. 156 (2024), Iss. 1 P.1
https://doi.org/10.1007/s00211-023-01382-8 [Citations: 0] -
Morley FEM for a Distributed Optimal Control Problem Governed by the von Kármán Equations
Chowdhury, Sudipto | Nataraj, Neela | Shylaja, DevikaComputational Methods in Applied Mathematics, Vol. 21 (2021), Iss. 1 P.233
https://doi.org/10.1515/cmam-2020-0030 [Citations: 5] -
Lowest-order equivalent nonstandard finite element methods for biharmonic plates
Carstensen, Carsten | Nataraj, NeelaESAIM: Mathematical Modelling and Numerical Analysis, Vol. 56 (2022), Iss. 1 P.41
https://doi.org/10.1051/m2an/2021085 [Citations: 7] -
A Posteriori Error Control for Fourth-Order Semilinear Problems with Quadratic Nonlinearity
Carstensen, Carsten | Gräßle, Benedikt | Nataraj, NeelaSIAM Journal on Numerical Analysis, Vol. 62 (2024), Iss. 2 P.919
https://doi.org/10.1137/23M1589852 [Citations: 0]