On the Validity of the Local Fourier Analysis

Year:    2019

Author:    Carmen Rodrigo, Francisco J. Gaspar, Ludmil T. Zikatanov

Journal of Computational Mathematics, Vol. 37 (2019), Iss. 3 : pp. 340–348

Abstract

Local Fourier analysis (LFA) is a useful tool in predicting the convergence factors of geometric multigrid methods (GMG). As is well known, on rectangular domains with periodic boundary conditions this analysis gives the exact convergence factors of such methods. When other boundary conditions are considered, however, this analysis was judged as been heuristic, with limited capabilities in predicting multigrid convergence rates. In this work, using the Fourier method, we extend these results by proving that such analysis yields the exact convergence factors for a wider class of problems, some of which cannot be handled by the traditional rigorous Fourier analysis.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1803-m2017-0294

Journal of Computational Mathematics, Vol. 37 (2019), Iss. 3 : pp. 340–348

Published online:    2019-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    9

Keywords:    Local Fourier analysis multigrid Fourier method.

Author Details

Carmen Rodrigo

Francisco J. Gaspar

Ludmil T. Zikatanov

  1. Optimized sparse approximate inverse smoothers for solving Laplacian linear systems

    He, Yunhui | Liu, Jun | Wang, Xiang-Sheng

    Linear Algebra and its Applications, Vol. 656 (2023), Iss. P.304

    https://doi.org/10.1016/j.laa.2022.10.004 [Citations: 2]
  2. Convergence analysis for parallel‐in‐time solution of hyperbolic systems

    De Sterck, Hans | Friedhoff, Stephanie | Howse, Alexander J. M. | MacLachlan, Scott P.

    Numerical Linear Algebra with Applications, Vol. 27 (2020), Iss. 1

    https://doi.org/10.1002/nla.2271 [Citations: 13]
  3. Optimal smoothing factor with coarsening by a factor of three for the MAC scheme for the Stokes equations

    He, Yunhui

    Computers & Mathematics with Applications, Vol. 132 (2023), Iss. P.63

    https://doi.org/10.1016/j.camwa.2022.12.007 [Citations: 0]
  4. A two-level method for isogeometric discretizations based on multiplicative Schwarz iterations

    Pé de la Riva, Álvaro | Rodrigo, Carmen | Gaspar, Francisco J.

    Computers & Mathematics with Applications, Vol. 100 (2021), Iss. P.41

    https://doi.org/10.1016/j.camwa.2021.08.020 [Citations: 3]
  5. Automated local Fourier analysis (aLFA)

    Kahl, Karsten | Kintscher, Nils

    BIT Numerical Mathematics, Vol. 60 (2020), Iss. 3 P.651

    https://doi.org/10.1007/s10543-019-00797-w [Citations: 7]
  6. On the robust solution of an isogeometric discretization of bilaplacian equation by using multigrid methods

    de la Riva, A. Pé | Gaspar, F.J. | Rodrigo, C.

    Computers & Mathematics with Applications, Vol. 80 (2020), Iss. 2 P.386

    https://doi.org/10.1016/j.camwa.2019.08.011 [Citations: 3]
  7. Local Fourier Analysis of p-Multigrid for High-Order Finite Element Operators

    Thompson, Jeremy L. | Brown, Jed | He, Yunhui

    SIAM Journal on Scientific Computing, Vol. 45 (2023), Iss. 3 P.S351

    https://doi.org/10.1137/21M1431199 [Citations: 2]
  8. Low‐order preconditioning of the Stokes equations

    Voronin, Alexey | He, Yunhui | MacLachlan, Scott | Olson, Luke N. | Tuminaro, Raymond

    Numerical Linear Algebra with Applications, Vol. 29 (2022), Iss. 3

    https://doi.org/10.1002/nla.2426 [Citations: 4]
  9. Local Fourier analysis for mixed finite-element methods for the Stokes equations

    He, Yunhui | MacLachlan, Scott P.

    Journal of Computational and Applied Mathematics, Vol. 357 (2019), Iss. P.161

    https://doi.org/10.1016/j.cam.2019.01.029 [Citations: 13]
  10. A local Fourier analysis for additive Schwarz smoothers

    Pé de la Riva, Álvaro | Rodrigo, Carmen | Gaspar, Francisco J. | Adler, James H. | Hu, Xiaozhe | Zikatanov, Ludmil

    Computers & Mathematics with Applications, Vol. 158 (2024), Iss. P.13

    https://doi.org/10.1016/j.camwa.2023.12.039 [Citations: 0]
  11. Independence of placement for local Fourier analysis

    He, Yunhui

    Numerical Linear Algebra with Applications, Vol. 28 (2021), Iss. 6

    https://doi.org/10.1002/nla.2388 [Citations: 0]