Time Domain Boundary Element Methods for the Neumann Problem: Error Estimates and Acoustic Problems

Time Domain Boundary Element Methods for the Neumann Problem: Error Estimates and Acoustic Problems

Year:    2018

Author:    Heiko Gimperlein, Ceyhun Özdemir, Ernst P. Stephan

Journal of Computational Mathematics, Vol. 36 (2018), Iss. 1 : pp. 70–89

Abstract

We investigate time domain boundary element methods for the wave equation in $\mathbb{R}^3$, with a view towards sound emission problems in computational acoustics. The Neumann problem is reduced to a time dependent integral equation for the hypersingular operator, and we present a priori and a posteriori error estimates for conforming Galerkin approximations in the more general case of a screen. Numerical experiments validate the convergence of our boundary element scheme and compare it with the numerical approximations obtained from an integral equation of the second kind. Computations in a half-space illustrate the influence of the reflection properties of a flat street.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1610-m2016-0494

Journal of Computational Mathematics, Vol. 36 (2018), Iss. 1 : pp. 70–89

Published online:    2018-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    20

Keywords:    Time domain boundary element method Wave equation Neumann problem Error estimates Sound radiation.

Author Details

Heiko Gimperlein

Ceyhun Özdemir

Ernst P. Stephan

  1. A time–dependent FEM-BEM coupling method for fluid–structure interaction in 3d

    Gimperlein, Heiko | Özdemir, Ceyhun | Stephan, Ernst P.

    Applied Numerical Mathematics, Vol. 152 (2020), Iss. P.49

    https://doi.org/10.1016/j.apnum.2020.01.023 [Citations: 7]
  2. Algorithmic aspects of enriched time domain boundary element methods

    Gimperlein, Heiko | Stark, David

    Engineering Analysis with Boundary Elements, Vol. 100 (2019), Iss. P.118

    https://doi.org/10.1016/j.enganabound.2018.02.010 [Citations: 5]
  3. An enhancement of the fast time-domain boundary element method for the three-dimensional wave equation

    Takahashi, Toru | Tanigawa, Masaki | Miyazawa, Naoya

    Computer Physics Communications, Vol. 271 (2022), Iss. P.108229

    https://doi.org/10.1016/j.cpc.2021.108229 [Citations: 9]
  4. Boundary elements with mesh refinements for the wave equation

    Gimperlein, Heiko | Meyer, Fabian | Özdemir, Ceyhun | Stark, David | Stephan, Ernst P.

    Numerische Mathematik, Vol. 139 (2018), Iss. 4 P.867

    https://doi.org/10.1007/s00211-018-0954-6 [Citations: 21]
  5. Time domain boundary elements for dynamic contact problems

    Gimperlein, Heiko | Meyer, Fabian | Özdemir, Ceyhun | Stephan, Ernst P.

    Computer Methods in Applied Mechanics and Engineering, Vol. 333 (2018), Iss. P.147

    https://doi.org/10.1016/j.cma.2018.01.025 [Citations: 15]
  6. Space‐time stochastic Galerkin boundary elements for acoustic scattering problems

    Gimperlein, Heiko | Meyer, Fabian | Özdemir, Ceyhun

    International Journal for Numerical Methods in Engineering, Vol. 125 (2024), Iss. 15

    https://doi.org/10.1002/nme.7497 [Citations: 0]
  7. A residual a posteriori error estimate for the time–domain boundary element method

    Gimperlein, Heiko | Özdemir, Ceyhun | Stark, David | Stephan, Ernst P.

    Numerische Mathematik, Vol. 146 (2020), Iss. 2 P.239

    https://doi.org/10.1007/s00211-020-01142-y [Citations: 8]
  8. Time domain boundary elements for elastodynamic contact

    Aimi, Alessandra | Di Credico, Giulia | Gimperlein, Heiko

    Computer Methods in Applied Mechanics and Engineering, Vol. 415 (2023), Iss. P.116296

    https://doi.org/10.1016/j.cma.2023.116296 [Citations: 4]
  9. A New Approach to Space-Time Boundary Integral Equations for the Wave Equation

    Steinbach, Olaf | Urzúa-Torres, Carolina

    SIAM Journal on Mathematical Analysis, Vol. 54 (2022), Iss. 2 P.1370

    https://doi.org/10.1137/21M1420034 [Citations: 6]
  10. Exact solution for the acoustical impulse response of a line source above an absorbing plane

    Ochmann, Martin

    The Journal of the Acoustical Society of America, Vol. 144 (2018), Iss. 3 P.1539

    https://doi.org/10.1121/1.5054301 [Citations: 3]
  11. Advanced Boundary Element Methods

    Time-Domain BEM

    Gwinner, Joachim | Stephan, Ernst Peter

    2018

    https://doi.org/10.1007/978-3-319-92001-6_13 [Citations: 0]
  12. On the BEM for acoustic wave problems

    Liu, Yijun

    Engineering Analysis with Boundary Elements, Vol. 107 (2019), Iss. P.53

    https://doi.org/10.1016/j.enganabound.2019.07.002 [Citations: 56]
  13. Transient elastodynamic analysis with a combination of convolution quadrature method and pseudo-initial condition method

    Li, Yuan | Zhang, J. | Zhong, Yudong | Shu, Xiaomin | Dong, Yunqiao

    Engineering Computations, Vol. 36 (2018), Iss. 1 P.334

    https://doi.org/10.1108/EC-06-2018-0263 [Citations: 2]
  14. hp-version time domain boundary elements for the wave equation on quasi-uniform meshes

    Gimperlein, Heiko | Özdemir, Ceyhun | Stark, David | Stephan, Ernst P.

    Computer Methods in Applied Mechanics and Engineering, Vol. 356 (2019), Iss. P.145

    https://doi.org/10.1016/j.cma.2019.07.018 [Citations: 8]