Journals
Resources
About Us
Open Access

Exponential Integrators for Stochastic Schrödinger Equations Driven by Itô Noise

Exponential Integrators for Stochastic Schrödinger Equations Driven by Itô Noise

Year:    2018

Author:    Rikard Anton, David Cohen

Journal of Computational Mathematics, Vol. 36 (2018), Iss. 2 : pp. 276–309

Abstract

We study an explicit exponential scheme for the time discretisation of stochastic Schrödinger Equations Driven by additive or Multiplicative Itô Noise. The numerical scheme is shown to converge with strong order 1 if the noise is additive and with strong order 1/2 for multiplicative noise. In addition, if the noise is additive, we show that the exact solutions of the linear stochastic Schrödinger equations satisfy trace formulas for the expected mass, energy, and momentum (i. e., linear drifts in these quantities). Furthermore, we inspect the behaviour of the numerical solutions with respect to these trace formulas. Several numerical simulations are presented and confirm our theoretical results.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1701-m2016-0525

Journal of Computational Mathematics, Vol. 36 (2018), Iss. 2 : pp. 276–309

Published online:    2018-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    34

Keywords:    Stochastic partial differential equations Stochastic Schrödinger equations Numerical methods Geometric numerical integration Stochastic exponential integrators Strong convergence Trace formulas.

Author Details

Rikard Anton

David Cohen

  1. Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations

    Cui, Jianbo | Hong, Jialin | Liu, Zhihui | Zhou, Weien

    Journal of Differential Equations, Vol. 266 (2019), Iss. 9 P.5625

    https://doi.org/10.1016/j.jde.2018.10.034 [Citations: 32]
  2. How do Monte Carlo estimates affect stochastic geometric numerical integration?

    D'Ambrosio, Raffaele | Di Giovacchino, Stefano

    International Journal of Computer Mathematics, Vol. 100 (2023), Iss. 1 P.192

    https://doi.org/10.1080/00207160.2022.2107393 [Citations: 1]
  3. Explicit approximation for stochastic nonlinear Schrödinger equation

    Cui, Jianbo

    Journal of Differential Equations, Vol. 419 (2025), Iss. P.1

    https://doi.org/10.1016/j.jde.2024.11.022 [Citations: 0]
  4. Numerical conservation issues for the stochastic Korteweg–de Vries equation

    D’Ambrosio, Raffaele | Di Giovacchino, Stefano

    Journal of Computational and Applied Mathematics, Vol. 424 (2023), Iss. P.114967

    https://doi.org/10.1016/j.cam.2022.114967 [Citations: 2]
  5. Analysis of a Splitting Scheme for Damped Stochastic Nonlinear Schrödinger Equation with Multiplicative Noise

    Cui, Jianbo | Hong, Jialin

    SIAM Journal on Numerical Analysis, Vol. 56 (2018), Iss. 4 P.2045

    https://doi.org/10.1137/17M1154904 [Citations: 24]
  6. Numerical Integrators for Continuous Disordered Nonlinear Schrödinger Equation

    Zhao, Xiaofei

    Journal of Scientific Computing, Vol. 89 (2021), Iss. 2

    https://doi.org/10.1007/s10915-021-01653-2 [Citations: 6]
  7. Drift-preserving numerical integrators for stochastic Poisson systems

    Cohen, David | Vilmart, Gilles

    International Journal of Computer Mathematics, Vol. 99 (2022), Iss. 1 P.4

    https://doi.org/10.1080/00207160.2021.1922679 [Citations: 8]
  8. Drift-preserving numerical integrators for stochastic Hamiltonian systems

    Chen, Chuchu | Cohen, David | D’Ambrosio, Raffaele | Lang, Annika

    Advances in Computational Mathematics, Vol. 46 (2020), Iss. 2

    https://doi.org/10.1007/s10444-020-09771-5 [Citations: 31]
  9. Exponential integrators for stochastic Maxwell's equations driven by Itô noise

    Cohen, David | Cui, Jianbo | Hong, Jialin | Sun, Liying

    Journal of Computational Physics, Vol. 410 (2020), Iss. P.109382

    https://doi.org/10.1016/j.jcp.2020.109382 [Citations: 17]
  10. Temporal approximation of stochastic evolution equations with irregular nonlinearities

    Klioba, Katharina | Veraar, Mark

    Journal of Evolution Equations, Vol. 24 (2024), Iss. 2

    https://doi.org/10.1007/s00028-024-00975-6 [Citations: 0]
  11. Optical solitons of stochastic perturbed Radhakrishnan–Kundu–Lakshmanan model with Kerr law of self-phase-modulation

    Albayrak, Pinar | Ozisik, Muslum | Secer, Aydin | Bayram, Mustafa | Das, Sebahat Ebru

    Modern Physics Letters B, Vol. 38 (2024), Iss. 15

    https://doi.org/10.1142/S0217984924501227 [Citations: 6]
  12. Symplectic Integration of Stochastic Hamiltonian Systems

    Infinite-Dimensional Stochastic Hamiltonian Systems

    Hong, Jialin | Sun, Liying

    2022

    https://doi.org/10.1007/978-981-19-7670-4_4 [Citations: 0]
  13. Analysis of a splitting scheme for a class of nonlinear stochastic Schrödinger equations

    Bréhier, Charles-Edouard | Cohen, David

    Applied Numerical Mathematics, Vol. 186 (2023), Iss. P.57

    https://doi.org/10.1016/j.apnum.2023.01.002 [Citations: 5]
  14. Large Deviations Principles for Symplectic Discretizations of Stochastic Linear Schrödinger Equation

    Chen, Chuchu | Hong, Jialin | Jin, Diancong | Sun, Liying

    Potential Analysis, Vol. 59 (2023), Iss. 3 P.971

    https://doi.org/10.1007/s11118-022-09990-z [Citations: 4]
  15. A charge-preserving compact splitting method for solving the coupled stochastic nonlinear Schrödinger equations

    Abdolabadi, F. | Zakeri, A. | Amiraslani, A.

    Applied Numerical Mathematics, Vol. 181 (2022), Iss. P.293

    https://doi.org/10.1016/j.apnum.2022.06.009 [Citations: 2]