Quasi-Newton Waveform Relaxation Based on Energy Method

Quasi-Newton Waveform Relaxation Based on Energy Method

Year:    2018

Author:    Yaolin Jiang, Zhen Miao

Journal of Computational Mathematics, Vol. 36 (2018), Iss. 4 : pp. 542–562

Abstract

A quasi-Newton waveform relaxation (WR) algorithm for semi-linear reaction-diffusion equations is presented at first in this paper. Using the idea of energy estimate, a general proof method for convergence of the continuous case and the discrete case of quasi-Newton WR is given, which appears to be the superlinear rate. The semi-linear wave equation and semi-linear coupled equations can similarly be solved by quasi-Newton WR algorithm and be proved as convergent with the energy inequalities. Finally several parallel numerical experiments are implemented to confirm the effectiveness of the above theories.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1702-m2016-0700

Journal of Computational Mathematics, Vol. 36 (2018), Iss. 4 : pp. 542–562

Published online:    2018-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    21

Keywords:    Waveform relaxation quasi-Newton Energy method Superlinear Parallelism.

Author Details

Yaolin Jiang

Zhen Miao

  1. First-Principles Calculations to Investigate the Structural, Electronic, Optical, and Elastic Constants; Thermal Conductivity; Raman Scattering; Mulliken Population; and XPS Loss Features of Boron Nitride Polytypes

    Zhang, Zhongyong | Jiao, Yongjie | S. K. S, Saravana Karthikeyan | Ramaraj, Sankar Ganesh | Zhang, Fuchun | Nguyen Dang, Nam | Qin, Xuesong | Liu, Xinghui

    The Journal of Physical Chemistry C, Vol. 127 (2023), Iss. 34 P.17213

    https://doi.org/10.1021/acs.jpcc.3c04086 [Citations: 3]
  2. A parareal approach of semi‐linear parabolic equations based on general waveform relaxation

    Li, Jun | Jiang, Yao‐Lin | Miao, Zhen

    Numerical Methods for Partial Differential Equations, Vol. 35 (2019), Iss. 6 P.2017

    https://doi.org/10.1002/num.22390 [Citations: 8]
  3. Waveform relaxation of partial differential equations

    Jiang, Yao-Lin | Miao, Zhen

    Numerical Algorithms, Vol. 79 (2018), Iss. 4 P.1087

    https://doi.org/10.1007/s11075-018-0475-5 [Citations: 3]
  4. Structural, electronic, optical, elastic, thermodynamic and thermal transport properties of Cs2AgInCl6 and Cs2AgSbCl6 double perovskite semiconductors using a first-principles study

    Zhang, Keqing | Zhang, Lijun | Saravana Karthikeyan, S. K. S. | Kong, Chang Yi | Zhang, Fuchun | Guo, Xiang | Dang, Nam Nguyen | Ramaraj, Sankar Ganesh | Liu, Xinghui

    Physical Chemistry Chemical Physics, Vol. 25 (2023), Iss. 46 P.31848

    https://doi.org/10.1039/D3CP03795A [Citations: 2]