New Error Estimates for Linear Triangle Finite Elements in the Steklov Eigenvalue Problem

New Error Estimates for Linear Triangle Finite Elements in the Steklov Eigenvalue Problem

Year:    2018

Author:    Hai Bi, Yidu Yang, Yuanyuan Yu, Jiayu Han

Journal of Computational Mathematics, Vol. 36 (2018), Iss. 5 : pp. 682–692

Abstract

This paper is concerned with the finite elements approximation for the Steklov eigenvalue problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average interpolation operator of nonconforming Crouzeix-Raviart element, and prove a new and optimal error estimate in $‖·‖_{0,∂Ω}$ for the eigenfunction of linear conforming finite element and the nonconforming Crouzeix-Raviart element. Finally, we present some numerical results to support the theoretical analysis.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1703-m2014-0188

Journal of Computational Mathematics, Vol. 36 (2018), Iss. 5 : pp. 682–692

Published online:    2018-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:    Steklov eigenvalue problem Concave polygonal domain Linear conforming finite element Nonconforming Crouzeix-Raviart element Error estimates.

Author Details

Hai Bi

Yidu Yang

Yuanyuan Yu

Jiayu Han