Journals
Resources
About Us
Open Access

Bases of Biquadratic Polynomial Spline Spaces over Hierarchical T-Meshes

Bases of Biquadratic Polynomial Spline Spaces over Hierarchical T-Meshes

Year:    2017

Author:    Fang Deng, Chao Zeng, Meng Wu, Jiansong Deng

Journal of Computational Mathematics, Vol. 35 (2017), Iss. 1 : pp. 91–120

Abstract

Basis functions of biquadratic polynomial spline spaces over hierarchical T-meshes are constructed. The basis functions are all tensor-product B-splines, which are linearly independent, nonnegative and complete. To make basis functions more efficient for geometric modeling, we also give out a new basis with the property of unit partition. Two preliminary applications are given to demonstrate that the new basis is efficient.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1601-m2014-0175

Journal of Computational Mathematics, Vol. 35 (2017), Iss. 1 : pp. 91–120

Published online:    2017-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    30

Keywords:    Spline spaces over T-meshes CVR graph Basis functions.

Author Details

Fang Deng

Chao Zeng

Meng Wu

Jiansong Deng

  1. Isogeometric Analysis Using Basis Functions of Splines Spaces over Hierarchical T-meshes with High Level Differences

    Liu, Jingjing | Deng, Fang | Ma, Huanhuan | Deng, Jiansong

    Communications in Mathematics and Statistics, Vol. (2023), Iss.

    https://doi.org/10.1007/s40304-022-00324-4 [Citations: 0]
  2. Dimensions of Tri-Quadratic $$ C^1 $$ Spline Spaces over Hierarchical 3D T-meshes

    Liu, Min | Deng, Fang | Deng, Jiansong

    Communications in Mathematics and Statistics, Vol. (2023), Iss.

    https://doi.org/10.1007/s40304-022-00296-5 [Citations: 0]
  3. Space Mapping of Spline Spaces over Hierarchical T-meshes

    Liu, Jingjing | Deng, Fang | Deng, Jiansong

    Communications in Mathematics and Statistics, Vol. 11 (2023), Iss. 2 P.403

    https://doi.org/10.1007/s40304-021-00258-3 [Citations: 1]
  4. On the stability of the dimensions of spline spaces with highest order of smoothness over T-meshes

    Huang, Bingru | Chen, Falai

    Journal of Computational and Applied Mathematics, Vol. 441 (2024), Iss. P.115681

    https://doi.org/10.1016/j.cam.2023.115681 [Citations: 0]
  5. Algorithms for Space Mapping Method on Spline Spaces over Modified Hierarchical T-Meshes

    Liu, Jingjing | Zhang, Li | Zhang, Weihong

    Mathematics, Vol. 10 (2022), Iss. 20 P.3864

    https://doi.org/10.3390/math10203864 [Citations: 0]