Grid-Independent Construction of Multistep Methods

Grid-Independent Construction of Multistep Methods

Year:    2017

Author:    Carmen Arévalo, Gustaf Söderlind

Journal of Computational Mathematics, Vol. 35 (2017), Iss. 5 : pp. 672–692

Abstract

A new polynomial formulation of variable step size linear multistep methods is presented, where each k-step method is characterized by a fixed set of $k-1$ or $k$ parameters. This construction includes all methods of maximal order ($p=k$ for stiff, and $p=k+1$ for nonstiff problems). Supporting time step adaptivity by construction, the new formulation is not based on extending classical fixed step size methods; instead classical methods are obtained as fixed step size restrictions within a unified framework. The methods are implemented in Matlab, with local error estimation and a wide range of step size controllers. This provides a platform for investigating and comparing different multistep method in realistic operational conditions. Computational experiments show that the new multistep method construction and implementation compares favorably to existing software, although variable order has not yet been included.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1611-m2015-0404

Journal of Computational Mathematics, Vol. 35 (2017), Iss. 5 : pp. 672–692

Published online:    2017-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    21

Keywords:    Linear multistep methods Variable step size Adaptive step size Step size control Explicit methods Implicit methods Nonstiff methods Stiff methods Initial value problems Ordinary differential equations Differential-algebraic equations Implementation.

Author Details

Carmen Arévalo

Gustaf Söderlind

  1. A time adaptive multirate Dirichlet–Neumann waveform relaxation method for heterogeneous coupled heat equations

    Meisrimel, Peter | Monge, Azahar | Birken, Philipp

    ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 103 (2023), Iss. 11

    https://doi.org/10.1002/zamm.202100328 [Citations: 0]
  2. On the zero-stability of multistep methods on smooth nonuniform grids

    Söderlind, Gustaf | Fekete, Imre | Faragó, István

    BIT Numerical Mathematics, Vol. 58 (2018), Iss. 4 P.1125

    https://doi.org/10.1007/s10543-018-0716-y [Citations: 8]
  3. Local error estimation and step size control in adaptive linear multistep methods

    Arévalo, Carmen | Söderlind, Gustaf | Hadjimichael, Yiannis | Fekete, Imre

    Numerical Algorithms, Vol. 86 (2021), Iss. 2 P.537

    https://doi.org/10.1007/s11075-020-00900-1 [Citations: 7]
  4. A Polynomial Formulation of Adaptive Strong Stability Preserving Multistep Methods

    Mohammadi, Fatemeh | Arévalo, Carmen | Führer, Claus

    SIAM Journal on Numerical Analysis, Vol. 57 (2019), Iss. 1 P.27

    https://doi.org/10.1137/17M1158811 [Citations: 1]
  5. General relaxation methods for initial-value problems with application to multistep schemes

    Ranocha, Hendrik | Lóczi, Lajos | Ketcheson, David I.

    Numerische Mathematik, Vol. 146 (2020), Iss. 4 P.875

    https://doi.org/10.1007/s00211-020-01158-4 [Citations: 28]
  6. A Software Platform for Adaptive High Order Multistep Methods

    Arévalo, Carmen | Jonsson-Glans, Erik | Olander, Josefine | Soto, Monica Selva | Söderlind, Gustaf

    ACM Transactions on Mathematical Software, Vol. 46 (2020), Iss. 1 P.1

    https://doi.org/10.1145/3372159 [Citations: 1]