Year: 2016
Author: Peijing Chen, Jianguo Huang, Xiaoqun Zhang
Journal of Computational Mathematics, Vol. 34 (2016), Iss. 6 : pp. 723–738
Abstract
We have proposed a primal-dual fixed point algorithm (PDFP) for solving minimization of the sum of three convex separable functions, which involves a smooth function with Lipschitz continuous gradient, a linear composite nonsmooth function, and a nonsmooth function. Compared with similar works, the parameters in PDFP are easier to choose and are allowed in a relatively larger range. We will extend PDFP to solve two kinds of separable multi-block minimization problems, arising in signal processing and imaging science. This work shows the flexibility of applying PDFP algorithm to multi-block problems and illustrates how practical and fully splitting schemes can be derived, especially for parallel implementation of large scale problems. The connections and comparisons to the alternating direction method of multiplier (ADMM) are also presented. We demonstrate how different algorithms can be obtained by splitting the problems in different ways through the classic example of sparsity regularized least square model with constraint. In particular, for a class of linearly constrained problems, which are of great interest in the context of multi-block ADMM, can be also solved by PDFP with a guarantee of convergence. Finally, some experiments are provided to illustrate the performance of several schemes derived by the PDFP algorithm.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jcm.1612-m2016-0536
Journal of Computational Mathematics, Vol. 34 (2016), Iss. 6 : pp. 723–738
Published online: 2016-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 16
Keywords: Primal-dual fixed point algorithm Multi-block optimization problems.
Author Details
-
Decentralized Dual Operator Splitting for Nonsmooth Composite Optimization
Li, Huaqing | Ding, Wentao | Wang, Zheng | Lu, Qingguo | Li, Yongfu | Xia, DawenIEEE Transactions on Network Science and Engineering, Vol. 9 (2022), Iss. 4 P.2084
https://doi.org/10.1109/TNSE.2022.3155287 [Citations: 0] -
Parallel linearized ADMM with application to multichannel image restoration and reconstruction
He, Chuan | Peng, Wenshen | Wang, Junwei | Feng, Xiaowei | Jiao, LichengEURASIP Journal on Image and Video Processing, Vol. 2024 (2024), Iss. 1
https://doi.org/10.1186/s13640-024-00654-z [Citations: 0] -
Parallel Alternating Direction Primal-Dual (PADPD) Algorithm for Centralized Optimization
Alaviani, S. Sh. | Kelkar, A. G.2021 60th IEEE Conference on Decision and Control (CDC), (2021), P.962
https://doi.org/10.1109/CDC45484.2021.9682904 [Citations: 2]