Optimal and Pressure-Independent $L^2$ Velocity Error Estimates for a Modified Crouzeix-Raviart Stokes Element with BDM Reconstructions
Year: 2015
Author: C. Brennecke, A. Linke, C. Merdon, J. Schöberl
Journal of Computational Mathematics, Vol. 33 (2015), Iss. 2 : pp. 191–208
Abstract
Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the velocity error become pressure-dependent, while divergence-free mixed finite elements deliver pressure-independent estimates. A recently introduced new variational crime using lowest-order Raviart-Thomas velocity reconstructions delivers a much more robust modified Crouzeix-Raviart element, obeying an optimal pressure-independent discrete $H^1$ velocity estimate. Refining this approach, a more sophisticated variational crime employing the lowest-order BDM element is proposed, which also allows proving an optimal pressure-independent $L^2$ velocity error. Numerical examples confirm the analysis and demonstrate the improved robustness in the Navier-Stokes case.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jcm.1411-m4499
Journal of Computational Mathematics, Vol. 33 (2015), Iss. 2 : pp. 191–208
Published online: 2015-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 18
Keywords: Variational crime Crouzeix-Raviart finite element Divergence-free mixed method Incompressible Navier-Stokes equations A priori error estimates.
Author Details
-
Divergence‐free tangential finite element methods for incompressible flows on surfaces
Lederer, Philip L. | Lehrenfeld, Christoph | Schöberl, JoachimInternational Journal for Numerical Methods in Engineering, Vol. 121 (2020), Iss. 11 P.2503
https://doi.org/10.1002/nme.6317 [Citations: 21] -
Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations with Continuous Pressure Finite Elements
Lederer, Philip L. | Linke, Alexander | Merdon, Christian | Schöberl, JoachimSIAM Journal on Numerical Analysis, Vol. 55 (2017), Iss. 3 P.1291
https://doi.org/10.1137/16M1089964 [Citations: 57] -
A Stabilizer-Free, Pressure-Robust, and Superconvergence Weak Galerkin Finite Element Method for the Stokes Equations on Polytopal Mesh
Mu, Lin | Ye, Xiu | Zhang, ShangyouSIAM Journal on Scientific Computing, Vol. 43 (2021), Iss. 4 P.A2614
https://doi.org/10.1137/20M1380405 [Citations: 39] -
Discontinuous Galerkin time discretization methods for parabolic problems with linear constraints
Voulis, Igor | Reusken, ArnoldJournal of Numerical Mathematics, Vol. 27 (2019), Iss. 3 P.155
https://doi.org/10.1515/jnma-2018-0013 [Citations: 4] -
Development of Pressure-Robust Discontinuous Galerkin Finite Element Methods for the Stokes Problem
Mu, Lin | Ye, Xiu | Zhang, ShangyouJournal of Scientific Computing, Vol. 89 (2021), Iss. 1
https://doi.org/10.1007/s10915-021-01634-5 [Citations: 11] -
Pressure-robust error estimate of optimal order for the Stokes equations: domains with re-entrant edges and anisotropic mesh grading
Apel, Thomas | Kempf, VolkerCalcolo, Vol. 58 (2021), Iss. 2
https://doi.org/10.1007/s10092-021-00402-z [Citations: 6] -
Pressure Robust Weak Galerkin Finite Element Methods for Stokes Problems
Mu, Lin
SIAM Journal on Scientific Computing, Vol. 42 (2020), Iss. 3 P.B608
https://doi.org/10.1137/19M1266320 [Citations: 34] -
An embedded–hybridized discontinuous Galerkin finite element method for the Stokes equations
Rhebergen, Sander | Wells, Garth N.Computer Methods in Applied Mechanics and Engineering, Vol. 358 (2020), Iss. P.112619
https://doi.org/10.1016/j.cma.2019.112619 [Citations: 31] -
A mass conserving mixed stress formulation for the Stokes equations
Gopalakrishnan, Jay | Lederer, Philip L | Schöberl, JoachimIMA Journal of Numerical Analysis, Vol. 40 (2020), Iss. 3 P.1838
https://doi.org/10.1093/imanum/drz022 [Citations: 16] -
A pressure‐robust weak Galerkin finite element method for Navier–Stokes equations
Mu, Lin
Numerical Methods for Partial Differential Equations, Vol. 39 (2023), Iss. 3 P.2327
https://doi.org/10.1002/num.22969 [Citations: 3] -
Polynomial robust stability analysis for $H$(div)-conforming finite elements for the Stokes equations
Lederer, Philip L | Schöberl, JoachimIMA Journal of Numerical Analysis, Vol. 38 (2018), Iss. 4 P.1832
https://doi.org/10.1093/imanum/drx051 [Citations: 20] -
Finite Element Methods for Incompressible Flow Problems
The Stokes Equations
John, Volker
2016
https://doi.org/10.1007/978-3-319-45750-5_4 [Citations: 0] -
Viscosity robust weak Galerkin finite element methods for Stokes problems
Wang, Bin | Mu, LinElectronic Research Archive, Vol. 29 (2021), Iss. 1 P.1881
https://doi.org/10.3934/era.2020096 [Citations: 2] -
A Uniformly Robust H(DIV) Weak Galerkin Finite Element Methods for Brinkman Problems
Mu, Lin
SIAM Journal on Numerical Analysis, Vol. 58 (2020), Iss. 3 P.1422
https://doi.org/10.1137/19M1283604 [Citations: 14] -
Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-problem
Linke, A. | Merdon, C. | Neilan, M. | Neumann, F.Mathematics of Computation, Vol. 87 (2018), Iss. 312 P.1543
https://doi.org/10.1090/mcom/3344 [Citations: 12] -
Robust Arbitrary Order Mixed Finite Element Methods for the Incompressible Stokes Equations with pressure independent velocity errors
Linke, Alexander | Matthies, Gunar | Tobiska, LutzESAIM: Mathematical Modelling and Numerical Analysis, Vol. 50 (2016), Iss. 1 P.289
https://doi.org/10.1051/m2an/2015044 [Citations: 67] -
Towards Pressure-Robust Mixed Methods for the Incompressible Navier–Stokes Equations
Ahmed, Naveed | Linke, Alexander | Merdon, ChristianComputational Methods in Applied Mathematics, Vol. 18 (2018), Iss. 3 P.353
https://doi.org/10.1515/cmam-2017-0047 [Citations: 14] -
Hybrid Discontinuous Galerkin Methods with Relaxed H(div)-Conformity for Incompressible Flows. Part I
Lederer, Philip L. | Lehrenfeld, Christoph | Schöberl, JoachimSIAM Journal on Numerical Analysis, Vol. 56 (2018), Iss. 4 P.2070
https://doi.org/10.1137/17M1138078 [Citations: 31] -
On velocity errors due to irrotational forces in the Navier–Stokes momentum balance
Linke, A. | Merdon, C.Journal of Computational Physics, Vol. 313 (2016), Iss. P.654
https://doi.org/10.1016/j.jcp.2016.02.070 [Citations: 34] -
Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier–Stokes equations
Linke, A. | Merdon, C.Computer Methods in Applied Mechanics and Engineering, Vol. 311 (2016), Iss. P.304
https://doi.org/10.1016/j.cma.2016.08.018 [Citations: 81] -
Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods
Lederer, Philip Lukas | Merdon, Christian | Schöberl, JoachimNumerische Mathematik, Vol. 142 (2019), Iss. 3 P.713
https://doi.org/10.1007/s00211-019-01049-3 [Citations: 8] -
OptimalL2velocity error estimate for a modified pressure-robust Crouzeix–Raviart Stokes element
Linke, A. | Merdon, C. | Wollner, W.IMA Journal of Numerical Analysis, Vol. 37 (2017), Iss. 1 P.354
https://doi.org/10.1093/imanum/drw019 [Citations: 16] -
A pressure robust staggered discontinuous Galerkin method for the Stokes equations
Zhao, Lina | Park, Eun-Jae | Chung, EricComputers & Mathematics with Applications, Vol. 128 (2022), Iss. P.163
https://doi.org/10.1016/j.camwa.2022.10.019 [Citations: 5] -
A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes
Apel, Thomas | Kempf, Volker | Linke, Alexander | Merdon, ChristianIMA Journal of Numerical Analysis, Vol. 42 (2022), Iss. 1 P.392
https://doi.org/10.1093/imanum/draa097 [Citations: 5] -
Robust weak Galerkin finite element solvers for Stokes flow based on a lifting operator
Wang, Zhuoran | Wang, Ruishu | Liu, JiangguoComputers & Mathematics with Applications, Vol. 125 (2022), Iss. P.90
https://doi.org/10.1016/j.camwa.2022.08.043 [Citations: 6] -
On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows
John, Volker | Linke, Alexander | Merdon, Christian | Neilan, Michael | Rebholz, Leo G.SIAM Review, Vol. 59 (2017), Iss. 3 P.492
https://doi.org/10.1137/15M1047696 [Citations: 269] -
On Really Locking-Free Mixed Finite Element Methods for the Transient Incompressible Stokes Equations
Ahmed, Naveed | Linke, Alexander | Merdon, ChristianSIAM Journal on Numerical Analysis, Vol. 56 (2018), Iss. 1 P.185
https://doi.org/10.1137/17M1112017 [Citations: 12] -
Finite elements for scalar convection-dominated equations and incompressible flow problems: a never ending story?
John, Volker | Knobloch, Petr | Novo, JuliaComputing and Visualization in Science, Vol. 19 (2018), Iss. 5-6 P.47
https://doi.org/10.1007/s00791-018-0290-5 [Citations: 55] -
A pressure-robust numerical scheme for the Stokes equations based on the WOPSIP DG approach
Zeng, Yuping | Zhong, Liuqiang | Wang, Feng | Zhang, Shangyou | Cai, MingchaoJournal of Computational and Applied Mathematics, Vol. 445 (2024), Iss. P.115819
https://doi.org/10.1016/j.cam.2024.115819 [Citations: 0] -
A DG Method for the Stokes Equations on Tensor Product Meshes with $$[P_k]^d-P_{k-1}$$ Element
Mu, Lin | Ye, Xiu | Zhang, Shangyou | Zhu, PengCommunications on Applied Mathematics and Computation, Vol. 6 (2024), Iss. 4 P.2431
https://doi.org/10.1007/s42967-022-00243-9 [Citations: 2] -
Analysis of a Mixed DG Method for Stress-Velocity Formulation of the Stokes Equations
Zhao, Lina
Journal of Scientific Computing, Vol. 92 (2022), Iss. 2
https://doi.org/10.1007/s10915-022-01895-8 [Citations: 2] -
A Hellan--Herrmann--Johnson-like Method for the Stream Function Formulation of the Stokes Equations in Two and Three Space Dimensions
Lederer, Philip L.
SIAM Journal on Numerical Analysis, Vol. 59 (2021), Iss. 1 P.503
https://doi.org/10.1137/20M1338034 [Citations: 1]