Optimal and Pressure-Independent $L^2$ Velocity Error Estimates for a Modified Crouzeix-Raviart Stokes Element with BDM Reconstructions

Optimal and Pressure-Independent $L^2$ Velocity Error Estimates for a Modified Crouzeix-Raviart Stokes Element with BDM Reconstructions

Year:    2015

Author:    C. Brennecke, A. Linke, C. Merdon, J. Schöberl

Journal of Computational Mathematics, Vol. 33 (2015), Iss. 2 : pp. 191–208

Abstract

Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the velocity error become pressure-dependent, while divergence-free mixed finite elements deliver pressure-independent estimates. A recently introduced new variational crime using lowest-order Raviart-Thomas velocity reconstructions delivers a much more robust modified Crouzeix-Raviart element, obeying an optimal pressure-independent discrete $H^1$ velocity estimate. Refining this approach, a more sophisticated variational crime employing the lowest-order BDM element is proposed, which also allows proving an optimal pressure-independent $L^2$ velocity error. Numerical examples confirm the analysis and demonstrate the improved robustness in the Navier-Stokes case.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1411-m4499

Journal of Computational Mathematics, Vol. 33 (2015), Iss. 2 : pp. 191–208

Published online:    2015-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    18

Keywords:    Variational crime Crouzeix-Raviart finite element Divergence-free mixed method Incompressible Navier-Stokes equations A priori error estimates.

Author Details

C. Brennecke

A. Linke

C. Merdon

J. Schöberl

  1. Divergence‐free tangential finite element methods for incompressible flows on surfaces

    Lederer, Philip L. | Lehrenfeld, Christoph | Schöberl, Joachim

    International Journal for Numerical Methods in Engineering, Vol. 121 (2020), Iss. 11 P.2503

    https://doi.org/10.1002/nme.6317 [Citations: 21]
  2. Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations with Continuous Pressure Finite Elements

    Lederer, Philip L. | Linke, Alexander | Merdon, Christian | Schöberl, Joachim

    SIAM Journal on Numerical Analysis, Vol. 55 (2017), Iss. 3 P.1291

    https://doi.org/10.1137/16M1089964 [Citations: 57]
  3. A Stabilizer-Free, Pressure-Robust, and Superconvergence Weak Galerkin Finite Element Method for the Stokes Equations on Polytopal Mesh

    Mu, Lin | Ye, Xiu | Zhang, Shangyou

    SIAM Journal on Scientific Computing, Vol. 43 (2021), Iss. 4 P.A2614

    https://doi.org/10.1137/20M1380405 [Citations: 39]
  4. Discontinuous Galerkin time discretization methods for parabolic problems with linear constraints

    Voulis, Igor | Reusken, Arnold

    Journal of Numerical Mathematics, Vol. 27 (2019), Iss. 3 P.155

    https://doi.org/10.1515/jnma-2018-0013 [Citations: 4]
  5. Development of Pressure-Robust Discontinuous Galerkin Finite Element Methods for the Stokes Problem

    Mu, Lin | Ye, Xiu | Zhang, Shangyou

    Journal of Scientific Computing, Vol. 89 (2021), Iss. 1

    https://doi.org/10.1007/s10915-021-01634-5 [Citations: 11]
  6. Pressure-robust error estimate of optimal order for the Stokes equations: domains with re-entrant edges and anisotropic mesh grading

    Apel, Thomas | Kempf, Volker

    Calcolo, Vol. 58 (2021), Iss. 2

    https://doi.org/10.1007/s10092-021-00402-z [Citations: 6]
  7. Pressure Robust Weak Galerkin Finite Element Methods for Stokes Problems

    Mu, Lin

    SIAM Journal on Scientific Computing, Vol. 42 (2020), Iss. 3 P.B608

    https://doi.org/10.1137/19M1266320 [Citations: 34]
  8. An embedded–hybridized discontinuous Galerkin finite element method for the Stokes equations

    Rhebergen, Sander | Wells, Garth N.

    Computer Methods in Applied Mechanics and Engineering, Vol. 358 (2020), Iss. P.112619

    https://doi.org/10.1016/j.cma.2019.112619 [Citations: 31]
  9. A mass conserving mixed stress formulation for the Stokes equations

    Gopalakrishnan, Jay | Lederer, Philip L | Schöberl, Joachim

    IMA Journal of Numerical Analysis, Vol. 40 (2020), Iss. 3 P.1838

    https://doi.org/10.1093/imanum/drz022 [Citations: 16]
  10. A pressure‐robust weak Galerkin finite element method for Navier–Stokes equations

    Mu, Lin

    Numerical Methods for Partial Differential Equations, Vol. 39 (2023), Iss. 3 P.2327

    https://doi.org/10.1002/num.22969 [Citations: 3]
  11. Polynomial robust stability analysis for $H$(div)-conforming finite elements for the Stokes equations

    Lederer, Philip L | Schöberl, Joachim

    IMA Journal of Numerical Analysis, Vol. 38 (2018), Iss. 4 P.1832

    https://doi.org/10.1093/imanum/drx051 [Citations: 20]
  12. Finite Element Methods for Incompressible Flow Problems

    The Stokes Equations

    John, Volker

    2016

    https://doi.org/10.1007/978-3-319-45750-5_4 [Citations: 0]
  13. Viscosity robust weak Galerkin finite element methods for Stokes problems

    Wang, Bin | Mu, Lin

    Electronic Research Archive, Vol. 29 (2021), Iss. 1 P.1881

    https://doi.org/10.3934/era.2020096 [Citations: 2]
  14. A Uniformly Robust H(DIV) Weak Galerkin Finite Element Methods for Brinkman Problems

    Mu, Lin

    SIAM Journal on Numerical Analysis, Vol. 58 (2020), Iss. 3 P.1422

    https://doi.org/10.1137/19M1283604 [Citations: 14]
  15. Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-problem

    Linke, A. | Merdon, C. | Neilan, M. | Neumann, F.

    Mathematics of Computation, Vol. 87 (2018), Iss. 312 P.1543

    https://doi.org/10.1090/mcom/3344 [Citations: 12]
  16. Robust Arbitrary Order Mixed Finite Element Methods for the Incompressible Stokes Equations with pressure independent velocity errors

    Linke, Alexander | Matthies, Gunar | Tobiska, Lutz

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 50 (2016), Iss. 1 P.289

    https://doi.org/10.1051/m2an/2015044 [Citations: 67]
  17. Towards Pressure-Robust Mixed Methods for the Incompressible Navier–Stokes Equations

    Ahmed, Naveed | Linke, Alexander | Merdon, Christian

    Computational Methods in Applied Mathematics, Vol. 18 (2018), Iss. 3 P.353

    https://doi.org/10.1515/cmam-2017-0047 [Citations: 14]
  18. Hybrid Discontinuous Galerkin Methods with Relaxed H(div)-Conformity for Incompressible Flows. Part I

    Lederer, Philip L. | Lehrenfeld, Christoph | Schöberl, Joachim

    SIAM Journal on Numerical Analysis, Vol. 56 (2018), Iss. 4 P.2070

    https://doi.org/10.1137/17M1138078 [Citations: 31]
  19. On velocity errors due to irrotational forces in the Navier–Stokes momentum balance

    Linke, A. | Merdon, C.

    Journal of Computational Physics, Vol. 313 (2016), Iss. P.654

    https://doi.org/10.1016/j.jcp.2016.02.070 [Citations: 34]
  20. Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier–Stokes equations

    Linke, A. | Merdon, C.

    Computer Methods in Applied Mechanics and Engineering, Vol. 311 (2016), Iss. P.304

    https://doi.org/10.1016/j.cma.2016.08.018 [Citations: 81]
  21. Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods

    Lederer, Philip Lukas | Merdon, Christian | Schöberl, Joachim

    Numerische Mathematik, Vol. 142 (2019), Iss. 3 P.713

    https://doi.org/10.1007/s00211-019-01049-3 [Citations: 8]
  22. OptimalL2velocity error estimate for a modified pressure-robust Crouzeix–Raviart Stokes element

    Linke, A. | Merdon, C. | Wollner, W.

    IMA Journal of Numerical Analysis, Vol. 37 (2017), Iss. 1 P.354

    https://doi.org/10.1093/imanum/drw019 [Citations: 16]
  23. A pressure robust staggered discontinuous Galerkin method for the Stokes equations

    Zhao, Lina | Park, Eun-Jae | Chung, Eric

    Computers & Mathematics with Applications, Vol. 128 (2022), Iss. P.163

    https://doi.org/10.1016/j.camwa.2022.10.019 [Citations: 5]
  24. A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes

    Apel, Thomas | Kempf, Volker | Linke, Alexander | Merdon, Christian

    IMA Journal of Numerical Analysis, Vol. 42 (2022), Iss. 1 P.392

    https://doi.org/10.1093/imanum/draa097 [Citations: 5]
  25. Robust weak Galerkin finite element solvers for Stokes flow based on a lifting operator

    Wang, Zhuoran | Wang, Ruishu | Liu, Jiangguo

    Computers & Mathematics with Applications, Vol. 125 (2022), Iss. P.90

    https://doi.org/10.1016/j.camwa.2022.08.043 [Citations: 6]
  26. On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows

    John, Volker | Linke, Alexander | Merdon, Christian | Neilan, Michael | Rebholz, Leo G.

    SIAM Review, Vol. 59 (2017), Iss. 3 P.492

    https://doi.org/10.1137/15M1047696 [Citations: 269]
  27. On Really Locking-Free Mixed Finite Element Methods for the Transient Incompressible Stokes Equations

    Ahmed, Naveed | Linke, Alexander | Merdon, Christian

    SIAM Journal on Numerical Analysis, Vol. 56 (2018), Iss. 1 P.185

    https://doi.org/10.1137/17M1112017 [Citations: 12]
  28. Finite elements for scalar convection-dominated equations and incompressible flow problems: a never ending story?

    John, Volker | Knobloch, Petr | Novo, Julia

    Computing and Visualization in Science, Vol. 19 (2018), Iss. 5-6 P.47

    https://doi.org/10.1007/s00791-018-0290-5 [Citations: 55]
  29. A pressure-robust numerical scheme for the Stokes equations based on the WOPSIP DG approach

    Zeng, Yuping | Zhong, Liuqiang | Wang, Feng | Zhang, Shangyou | Cai, Mingchao

    Journal of Computational and Applied Mathematics, Vol. 445 (2024), Iss. P.115819

    https://doi.org/10.1016/j.cam.2024.115819 [Citations: 0]
  30. A DG Method for the Stokes Equations on Tensor Product Meshes with $$[P_k]^d-P_{k-1}$$ Element

    Mu, Lin | Ye, Xiu | Zhang, Shangyou | Zhu, Peng

    Communications on Applied Mathematics and Computation, Vol. 6 (2024), Iss. 4 P.2431

    https://doi.org/10.1007/s42967-022-00243-9 [Citations: 2]
  31. Analysis of a Mixed DG Method for Stress-Velocity Formulation of the Stokes Equations

    Zhao, Lina

    Journal of Scientific Computing, Vol. 92 (2022), Iss. 2

    https://doi.org/10.1007/s10915-022-01895-8 [Citations: 2]
  32. A Hellan--Herrmann--Johnson-like Method for the Stream Function Formulation of the Stokes Equations in Two and Three Space Dimensions

    Lederer, Philip L.

    SIAM Journal on Numerical Analysis, Vol. 59 (2021), Iss. 1 P.503

    https://doi.org/10.1137/20M1338034 [Citations: 1]