A Cascadic Multigrid Algorithm for Computing the Fiedler Vector of Graph Laplacians

Year:    2015

Author:    John C. Urschel, Jinchao Xu, Xiaozhe Hu, Ludmil T. Zikatanov

Journal of Computational Mathematics, Vol. 33 (2015), Iss. 2 : pp. 209–226

Abstract

In this paper, we develop a cascadic multigrid algorithm for fast computation of the Fiedler vector of a graph Laplacian, namely, the eigenvector corresponding to the second smallest eigenvalue. This vector has been found to have applications in fields such as graph partitioning and graph drawing. The algorithm is a purely algebraic approach based on a heavy edge coarsening scheme and pointwise smoothing for refinement. To gain theoretical insight, we also consider the related cascadic multigrid method in the geometric setting for elliptic eigenvalue problems and show its uniform convergence under certain assumptions. Numerical tests are presented for computing the Fiedler vector of several practical graphs, and numerical results show the efficiency and optimality of our proposed cascadic multigrid algorithm.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1412-m2014-0041

Journal of Computational Mathematics, Vol. 33 (2015), Iss. 2 : pp. 209–226

Published online:    2015-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    18

Keywords:    Graph Laplacian Cascadic multigrid Fiedler vector Elliptic eigenvalue problems.

Author Details

John C. Urschel

Jinchao Xu

Xiaozhe Hu

Ludmil T. Zikatanov