New Trigonometric Basis Possessing Exponential Shape Parameters

New Trigonometric Basis Possessing Exponential Shape Parameters

Year:    2015

Author:    Yuanpeng Zhu, Xuli Han

Journal of Computational Mathematics, Vol. 33 (2015), Iss. 6 : pp. 642–684

Abstract

Four new trigonometric Bernstein-like basis functions with two exponential shape parameters are constructed, based on which a class of trigonometric Bézier-like curves, analogous to the cubic Bézier curves, is proposed. The corner cutting algorithm for computing the trigonometric Bézier-like curves is given. Any arc of an ellipse or a parabola can be represented exactly by using the trigonometric Bézier-like curves. The corresponding trigonometric Bernstein-like operator is presented and the spectral analysis shows that the trigonometric Bézier-like curves are closer to the given control polygon than the cubic Bézier curves. Based on the new proposed trigonometric Bernstein-like basis, a new class of trigonometric B-spline-like basis functions with two local exponential shape parameters is constructed. The totally positive property of the trigonometric B-spline-like basis is proved. For different values of the shape parameters, the associated trigonometric B-spline-like curves can be $C^2$ ∩ $FC^3$ continuous for a non-uniform knot vector, and $C^3$ or $C^5$ continuous for a uniform knot vector. A new class of trigonometric Bézier-like basis functions over triangular domain is also constructed. A de Casteljau-type algorithm for computing the associated trigonometric Bézier-like patch is developed. The conditions for $G^1$ continuous joining two trigonometric Bézier-like patches over triangular domain are deduced.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1509-m4414

Journal of Computational Mathematics, Vol. 33 (2015), Iss. 6 : pp. 642–684

Published online:    2015-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    43

Keywords:    Trigonometric Bernstein-like basis Trigonometric B-spline-like basis Corner cutting algorithm Totally positive property Shape parameter Triangular domain.

Author Details

Yuanpeng Zhu

Xuli Han

  1. Construction of Cubic Trigonometric Curves with an Application of Curve Modelling

    Majeed, Abdul | Naureen, Mehwish | Abbas, Muhammad | Miura, Kenjiro

    Mathematics, Vol. 10 (2022), Iss. 7 P.1087

    https://doi.org/10.3390/math10071087 [Citations: 1]
  2. New Trigonometric Basis Possessing Denominator Shape Parameters

    Wang, Kai | Zhang, Guicang

    Mathematical Problems in Engineering, Vol. 2018 (2018), Iss. P.1

    https://doi.org/10.1155/2018/9569834 [Citations: 5]
  3. Scattered Data Interpolation Using Cubic Trigonometric B閦ier Triangular Patch

    Hashim, Ishak | Nabilah Che Draman, Nur | Ariffin Abdul Karim, Samsul | Ping Yeo, Wee | Baleanu, Dumitru

    Computers, Materials & Continua, Vol. 69 (2021), Iss. 1 P.221

    https://doi.org/10.32604/cmc.2021.016006 [Citations: 0]
  4. A Generalized Quasi Cubic Trigonometric Bernstein Basis Functions and Its B-Spline Form

    Fu, Yunyi | Zhu, Yuanpeng

    Mathematics, Vol. 9 (2021), Iss. 10 P.1154

    https://doi.org/10.3390/math9101154 [Citations: 3]
  5. A Class of Sextic Trigonometric Bézier Curve with Two Shape Parameters

    Naseer, Salma | Abbas, Muhammad | Emadifar, Homan | Bi, Samia Bi | Nazir, Tahir | Shah, Zaheer Hussain | Aslam, Muhammad

    Journal of Mathematics, Vol. 2021 (2021), Iss. P.1

    https://doi.org/10.1155/2021/9989810 [Citations: 4]
  6. Geometric Modeling Using New Cubic Trigonometric B-Spline Functions with Shape Parameter

    Majeed, Abdul | Abbas, Muhammad | Qayyum, Faiza | Miura, Kenjiro T. | Misro, Md Yushalify | Nazir, Tahir

    Mathematics, Vol. 8 (2020), Iss. 12 P.2102

    https://doi.org/10.3390/math8122102 [Citations: 22]
  7. Quasi-quintic trigonometric Bézier curves with two shape parameters

    Tan, Xuewen | Zhu, Yuanpeng

    Computational and Applied Mathematics, Vol. 38 (2019), Iss. 4

    https://doi.org/10.1007/s40314-019-0961-y [Citations: 6]
  8. Apollonian de Casteljau–type algorithms for complex rational Bézier curves

    Jüttler, Bert | Schicho, Josef | Šír, Zbyněk

    Computer Aided Geometric Design, Vol. 107 (2023), Iss. P.102254

    https://doi.org/10.1016/j.cagd.2023.102254 [Citations: 0]
  9. Closed-form solution of a class of generalized cubic B-splines

    Huang, Yiting | Zhu, Yuanpeng

    Computational and Applied Mathematics, Vol. 43 (2024), Iss. 5

    https://doi.org/10.1007/s40314-024-02832-1 [Citations: 0]
  10. A class of blending functions with $C^{\infty }$ smoothness

    Zhu, Yuanpeng

    Numerical Algorithms, Vol. 88 (2021), Iss. 2 P.555

    https://doi.org/10.1007/s11075-020-01049-7 [Citations: 5]
  11. A Class of Trigonometric Bernstein‐Type Basis Functions with Four Shape Parameters

    Zhu, Yuanpeng | Liu, Zhuo | Nguyen-Thanh, Nhon

    Mathematical Problems in Engineering, Vol. 2019 (2019), Iss. 1

    https://doi.org/10.1155/2019/9026187 [Citations: 6]
  12. A Shape Preserving Class of Two-Frequency Trigonometric B-Spline Curves

    Albrecht, Gudrun | Mainar, Esmeralda | Peña, Juan Manuel | Rubio, Beatriz

    Symmetry, Vol. 15 (2023), Iss. 11 P.2041

    https://doi.org/10.3390/sym15112041 [Citations: 0]
  13. New Cubic Trigonometric Bezier-Like Functions with Shape Parameter: Curvature and Its Spiral Segment

    Majeed, Abdul | Abbas, Muhammad | Sittar, Amna Abdul | Kamran, Mohsin | Tahseen, Saba | Emadifar, Homan | Ahmad, Ali

    Journal of Mathematics, Vol. 2021 (2021), Iss. P.1

    https://doi.org/10.1155/2021/6330649 [Citations: 3]
  14. A New Class of Trigonometric B-Spline Curves

    Albrecht, Gudrun | Mainar, Esmeralda | Peña, Juan Manuel | Rubio, Beatriz

    Symmetry, Vol. 15 (2023), Iss. 8 P.1551

    https://doi.org/10.3390/sym15081551 [Citations: 2]
  15. New rational cubic trigonometric B-spline curves with two shape parameters

    Majeed, Abdul | Qayyum, Faiza

    Computational and Applied Mathematics, Vol. 39 (2020), Iss. 3

    https://doi.org/10.1007/s40314-020-01197-5 [Citations: 7]