Year: 2015
Author: Yuanpeng Zhu, Xuli Han
Journal of Computational Mathematics, Vol. 33 (2015), Iss. 6 : pp. 642–684
Abstract
Four new trigonometric Bernstein-like basis functions with two exponential shape parameters are constructed, based on which a class of trigonometric Bézier-like curves, analogous to the cubic Bézier curves, is proposed. The corner cutting algorithm for computing the trigonometric Bézier-like curves is given. Any arc of an ellipse or a parabola can be represented exactly by using the trigonometric Bézier-like curves. The corresponding trigonometric Bernstein-like operator is presented and the spectral analysis shows that the trigonometric Bézier-like curves are closer to the given control polygon than the cubic Bézier curves. Based on the new proposed trigonometric Bernstein-like basis, a new class of trigonometric B-spline-like basis functions with two local exponential shape parameters is constructed. The totally positive property of the trigonometric B-spline-like basis is proved. For different values of the shape parameters, the associated trigonometric B-spline-like curves can be $C^2$ ∩ $FC^3$ continuous for a non-uniform knot vector, and $C^3$ or $C^5$ continuous for a uniform knot vector. A new class of trigonometric Bézier-like basis functions over triangular domain is also constructed. A de Casteljau-type algorithm for computing the associated trigonometric Bézier-like patch is developed. The conditions for $G^1$ continuous joining two trigonometric Bézier-like patches over triangular domain are deduced.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jcm.1509-m4414
Journal of Computational Mathematics, Vol. 33 (2015), Iss. 6 : pp. 642–684
Published online: 2015-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 43
Keywords: Trigonometric Bernstein-like basis Trigonometric B-spline-like basis Corner cutting algorithm Totally positive property Shape parameter Triangular domain.