Superconvergence Analysis for the Stable Conforming Rectangular Mixed Finite Elements for the Linear Elasticity Problem

Superconvergence Analysis for the Stable Conforming Rectangular Mixed Finite Elements for the Linear Elasticity Problem

Year:    2014

Journal of Computational Mathematics, Vol. 32 (2014), Iss. 2 : pp. 205–214

Abstract

In this paper, we consider the linear elasticity problem based on the Hellinger-Reissner variational principle. An $\mathcal{O}(h^2)$ order superclose property for the stress and displacement and a global superconvergence result of the displacement are established by employing a Clément interpolation, an integral identity and appropriate postprocessing techniques.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1401-m3837

Journal of Computational Mathematics, Vol. 32 (2014), Iss. 2 : pp. 205–214

Published online:    2014-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:    Elasticity Supercloseness Global superconvergence.

  1. Stress state of a rectangular domain with the mixed boundary conditions

    Pozhylenkov, O. | Vaysfeld, N.

    Procedia Structural Integrity, Vol. 28 (2020), Iss. P.458

    https://doi.org/10.1016/j.prostr.2020.10.054 [Citations: 2]
  2. The simplest nonconforming mixed finite element method for linear elasticity in the symmetric formulation on n-rectangular grids

    Hu, Jun | Man, Hongying | Wang, Jianye | Zhang, Shangyou

    Computers & Mathematics with Applications, Vol. 71 (2016), Iss. 7 P.1317

    https://doi.org/10.1016/j.camwa.2016.01.023 [Citations: 16]
  3. Superconvergence analysis of finite element method for Poisson–Nernst–Planck equations

    Shi, Dongyang | Yang, Huaijun

    Numerical Methods for Partial Differential Equations, Vol. 35 (2019), Iss. 3 P.1206

    https://doi.org/10.1002/num.22346 [Citations: 12]
  4. Superconvergent estimates of conforming finite element method for nonlinear time‐dependent Joule heating equations

    Shi, Dongyang | Yang, Huaijun

    Numerical Methods for Partial Differential Equations, Vol. 34 (2018), Iss. 1 P.336

    https://doi.org/10.1002/num.22202 [Citations: 6]
  5. A New Stabilization Method for the Elasticity Problem

    Shi, Dong-yang | Li, Ming-hao | Xu, Chao

    Journal of Scientific Computing, Vol. 65 (2015), Iss. 3 P.1025

    https://doi.org/10.1007/s10915-015-9996-4 [Citations: 0]
  6. Stress state of an elastic rectangular domain under steady load

    Pozhylenkov, O. | Vaysfeld, N. | Protserov, Y.

    Procedia Structural Integrity, Vol. 33 (2021), Iss. P.385

    https://doi.org/10.1016/j.prostr.2021.10.046 [Citations: 0]
  7. The stabilized mixed finite element scheme of elasticity problem

    Li, Ming-hao | Shi, Dong-yang | Li, Zhen-zhen

    Computational and Applied Mathematics, Vol. 37 (2018), Iss. 3 P.2588

    https://doi.org/10.1007/s40314-017-0466-5 [Citations: 2]
  8. The Brezzi–Pitkäranta stabilization scheme for the elasticity problem

    Li, Minghao | Shi, Dongyang | Dai, Ying

    Journal of Computational and Applied Mathematics, Vol. 286 (2015), Iss. P.7

    https://doi.org/10.1016/j.cam.2015.02.024 [Citations: 2]
  9. Recent Trends in Wave Mechanics and Vibrations

    Dynamic Mixed Problem of Elasticity for a Rectangular Domain

    Oleksii, Pozhylenkov | Nataly, Vaysfeld

    2023

    https://doi.org/10.1007/978-3-031-15758-5_20 [Citations: 0]