Year: 2014
Journal of Computational Mathematics, Vol. 32 (2014), Iss. 5 : pp. 507–521
Abstract
The numerical solution of flow problems usually requires bounded domains although the physical problem may take place in an unbounded or substantially larger domain. In this case, artificial boundaries are necessary. A well established artificial boundary condition for the Navier-Stokes equations discretized by finite elements is the "do-nothing" condition. The reason for this is the fact that this condition appears automatically in the variational formulation after partial integration of the viscous term and the pressure gradient. This condition is one of the most established outflow conditions for Navier-Stokes but there are very few analytical insight into this boundary condition. We address the question of existence and stability of weak solutions for the Navier-Stokes equations with a "directional do-nothing" condition. In contrast to the usual "do-nothing" condition this boundary condition has enhanced stability properties. In the case of pure outflow, the condition is equivalent to the original one, whereas in the case of inflow a dissipative effect appears. We show existence of weak solutions and illustrate the effect of this boundary condition by computation of steady and non-steady flows.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jcm.1405-m4347
Journal of Computational Mathematics, Vol. 32 (2014), Iss. 5 : pp. 507–521
Published online: 2014-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 15
Keywords: Boundary conditions Navier-Stokes Outflow condition Existence.
-
Variational resolution of outflow boundary conditions for incompressible Navier–Stokes
Bathory, Michal | Stefanelli, UlisseNonlinearity, Vol. 35 (2022), Iss. 11 P.5553
https://doi.org/10.1088/1361-6544/ac8fd8 [Citations: 0] -
On numerical simulation of flow problems in three dimension: energy conservation in fluid-structure interactions
Sváček, Petr | Dančová, Petra | Vít, TomášEPJ Web of Conferences, Vol. 92 (2015), Iss. P.02089
https://doi.org/10.1051/epjconf/20159202089 [Citations: 0] -
Nonlinear dynamics of fully developed swirling jets
Douglas, Christopher M. | Emerson, Benjamin L. | Lieuwen, Timothy C.Journal of Fluid Mechanics, Vol. 924 (2021), Iss.
https://doi.org/10.1017/jfm.2021.615 [Citations: 12] -
On a simple and effective thermal open boundary condition for convective heat transfer problems
Liu, Xiaoyu | Xie, Zhi | Dong, SuchuanInternational Journal of Heat and Mass Transfer, Vol. 151 (2020), Iss. P.119355
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119355 [Citations: 14] -
A convective boundary condition for the Navier–Stokes equations
Simon, John Sebastian H. | Notsu, HirofumiApplied Mathematics Letters, Vol. 128 (2022), Iss. P.107876
https://doi.org/10.1016/j.aml.2021.107876 [Citations: 5] -
Energy-stable boundary conditions based on a quadratic form: Applications to outflow/open-boundary problems in incompressible flows
Ni, Naxian | Yang, Zhiguo | Dong, SuchuanJournal of Computational Physics, Vol. 391 (2019), Iss. P.179
https://doi.org/10.1016/j.jcp.2019.04.030 [Citations: 9] -
Fluid-structure Interactions
Models
Richter, Thomas
2017
https://doi.org/10.1007/978-3-319-63970-3_2 [Citations: 0] -
Dynamic adaptive moving mesh finite‐volume method for the blood flow and coagulation modeling
Terekhov, Kirill M. | Butakov, Ivan D. | Danilov, Alexander A. | Vassilevski, Yuri V.International Journal for Numerical Methods in Biomedical Engineering, Vol. 39 (2023), Iss. 11
https://doi.org/10.1002/cnm.3731 [Citations: 2] -
Benchmark problems for numerical treatment of backflow at open boundaries
Bertoglio, Cristóbal | Caiazzo, Alfonso | Bazilevs, Yuri | Braack, Malte | Esmaily, Mahdi | Gravemeier, Volker | L. Marsden, Alison | Pironneau, Olivier | E. Vignon‐Clementel, Irene | A. Wall, WolfgangInternational Journal for Numerical Methods in Biomedical Engineering, Vol. 34 (2018), Iss. 2
https://doi.org/10.1002/cnm.2918 [Citations: 45] -
Nonlinear Differential Equations and Applications
Navier–Stokes Equations with Regularized Directional Boundary Condition
Nogueira, Pedro | Silvestre, Ana L.2024
https://doi.org/10.1007/978-3-031-53740-0_11 [Citations: 0] -
MHD natural convective flow of Fe3O4−H2O ferrofluids in an inclined partial open complex-wavy-walls ringed enclosures using non-linear Boussinesq approximation
Elshehabey, Hillal M. | Raizah, Zehba | Öztop, Hakan F. | Ahmed, Sameh E.International Journal of Mechanical Sciences, Vol. 170 (2020), Iss. P.105352
https://doi.org/10.1016/j.ijmecsci.2019.105352 [Citations: 57] -
Numerical solution of fluid-structure interaction represented by human vocal folds in airflow
Valášek, J. | Sváček, P. | Horáček, J. | Dančová, P. | Veselý, M.EPJ Web of Conferences, Vol. 114 (2016), Iss. P.02130
https://doi.org/10.1051/epjconf/201611402130 [Citations: 1] -
Solvability in a finite pipe of steady-state Navier–Stokes equations with boundary conditions involving Bernoulli pressure
Korobkov, Mikhail V. | Pileckas, Konstantin | Russo, RemigioCalculus of Variations and Partial Differential Equations, Vol. 59 (2020), Iss. 1
https://doi.org/10.1007/s00526-019-1688-8 [Citations: 7] -
The Boussinesq system with mixed non-smooth boundary conditions and do-nothing boundary flow
Ceretani, Andrea N. | Rautenberg, Carlos N.Zeitschrift für angewandte Mathematik und Physik, Vol. 70 (2019), Iss. 1
https://doi.org/10.1007/s00033-018-1058-y [Citations: 12] -
On the steady motion of Navier–Stokes flows past a fixed obstacle in a three-dimensional channel under mixed boundary conditions
Sperone, Gianmarco
Annali di Matematica Pura ed Applicata (1923 -), Vol. 200 (2021), Iss. 5 P.1961
https://doi.org/10.1007/s10231-021-01066-w [Citations: 4] -
Impact of viscosity modeling on the simulation of aortic blood flow
Katz, Sarah | Caiazzo, Alfonso | John, VolkerJournal of Computational and Applied Mathematics, Vol. 425 (2023), Iss. P.115036
https://doi.org/10.1016/j.cam.2022.115036 [Citations: 2] -
A Stokes-residual backflow stabilization method applied to physiological flows
Bertoglio, Cristóbal | Caiazzo, AlfonsoJournal of Computational Physics, Vol. 313 (2016), Iss. P.260
https://doi.org/10.1016/j.jcp.2016.02.045 [Citations: 17] -
On the incorporation of obstacles in a fluid flow problem using a Navier–Stokes–Brinkman penalization approach
Fuchsberger, Jana | Aigner, Philipp | Niederer, Steven | Plank, Gernot | Schima, Heinrich | Haase, Gundolf | Karabelas, EliasJournal of Computational Science, Vol. 57 (2022), Iss. P.101506
https://doi.org/10.1016/j.jocs.2021.101506 [Citations: 12] -
The spatial operator in the incompressible Navier–Stokes, Oseen and Stokes equations
Nordström, Jan | Laurén, FredrikComputer Methods in Applied Mechanics and Engineering, Vol. 363 (2020), Iss. P.112857
https://doi.org/10.1016/j.cma.2020.112857 [Citations: 9] -
Towards a Computational Framework for Modeling the Impact of Aortic Coarctations Upon Left Ventricular Load
Karabelas, Elias | Gsell, Matthias A. F. | Augustin, Christoph M. | Marx, Laura | Neic, Aurel | Prassl, Anton J. | Goubergrits, Leonid | Kuehne, Titus | Plank, GernotFrontiers in Physiology, Vol. 9 (2018), Iss.
https://doi.org/10.3389/fphys.2018.00538 [Citations: 26] -
Distributed parameter identification for the Navier–Stokes equations for obstacle detection
Aguayo, Jorge | Bertoglio, Cristóbal | Osses, AxelInverse Problems, Vol. 40 (2024), Iss. 1 P.015012
https://doi.org/10.1088/1361-6420/ad1133 [Citations: 0] -
A distributed resistance inverse method for flow obstacle identification from internal velocity measurements
Aguayo, Jorge | Bertoglio, Cristóbal | Osses, AxelInverse Problems, Vol. 37 (2021), Iss. 2 P.025010
https://doi.org/10.1088/1361-6420/abced8 [Citations: 5] -
Implicit-explicit Schemes for Incompressible Flow Problems with Variable Viscosity
Barrenechea, Gabriel | Castillo, Ernesto | Pacheco, DouglasSIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 4 P.A2660
https://doi.org/10.1137/23M1606526 [Citations: 0] -
On aerodynamic force computation in fluid–structure interaction problems — Comparison of different approaches
Valášek, Jan | Sváček, PetrJournal of Computational and Applied Mathematics, Vol. 429 (2023), Iss. P.115208
https://doi.org/10.1016/j.cam.2023.115208 [Citations: 3] -
A posteriori error estimation for the steady Navier–Stokes equations in random domains
Guignard, Diane | Nobile, Fabio | Picasso, MarcoComputer Methods in Applied Mechanics and Engineering, Vol. 313 (2017), Iss. P.483
https://doi.org/10.1016/j.cma.2016.10.008 [Citations: 9] -
Multiscale Analysis of Viscous Flows in Thin Tube Structures
Steady-State Stokes and Navier–Stokes Equations in Tube Structures
Panasenko, Grigory | Pileckas, Konstantin2024
https://doi.org/10.1007/978-3-031-54630-3_5 [Citations: 0] -
Finite Element Analysis of Laminar Heat Transfer within an Axial-Flux Permanent Magnet Machine
Willems, Robin | Friedrich, Léo A. J. | Verhoosel, Clemens V.Mathematical and Computational Applications, Vol. 26 (2021), Iss. 1 P.23
https://doi.org/10.3390/mca26010023 [Citations: 1] -
Proceedings of the 14th International Conference on Vibration Problems
The Flow-Induced Vibrations of Vocal Folds Approximated by the Finite Element Method
Valášek, Jan | Sváček, Petr | Horáček, Jaromír2021
https://doi.org/10.1007/978-981-15-8049-9_23 [Citations: 0] -
Aeroacoustic computation of fluid-structure interaction problems with low Mach numbers
Valášek, Jan | Sváček, Petr | Dančová, P.EPJ Web of Conferences, Vol. 180 (2018), Iss. P.02113
https://doi.org/10.1051/epjconf/201818002113 [Citations: 0] -
LU factorizations and ILU preconditioning for stabilized discretizations of incompressible Navier–Stokes equations
Konshin, Igor | Olshanskii, Maxim | Vassilevski, YuriNumerical Linear Algebra with Applications, Vol. 24 (2017), Iss. 3
https://doi.org/10.1002/nla.2085 [Citations: 6] -
On existence and uniqueness of solutions to a Boussinesq system with nonlinear and mixed boundary conditions
Arndt, Rafael | Ceretani, Andrea N. | Rautenberg, Carlos N.Journal of Mathematical Analysis and Applications, Vol. 490 (2020), Iss. 1 P.124201
https://doi.org/10.1016/j.jmaa.2020.124201 [Citations: 5] -
Finite Element Methods for Incompressible Flow Problems
The Navier–Stokes Equations as Model for Incompressible Flows
John, Volker
2016
https://doi.org/10.1007/978-3-319-45750-5_2 [Citations: 0] -
On numerical simulation of fluid - structure interaction problems using variational multiscale methods
Sváček, Petr
Journal of Computational and Applied Mathematics, Vol. 427 (2023), Iss. P.115125
https://doi.org/10.1016/j.cam.2023.115125 [Citations: 1] -
A Note on Global Attractors for a Transition to Turbulence ODE Model Problem
Singler, John R.
Differential Equations and Dynamical Systems, Vol. 32 (2024), Iss. 3 P.709
https://doi.org/10.1007/s12591-022-00590-2 [Citations: 0] -
Spectral properties of the incompressible Navier-Stokes equations
Laurén, Fredrik | Nordström, JanJournal of Computational Physics, Vol. 429 (2021), Iss. P.110019
https://doi.org/10.1016/j.jcp.2020.110019 [Citations: 2] -
Finite elements for scalar convection-dominated equations and incompressible flow problems: a never ending story?
John, Volker | Knobloch, Petr | Novo, JuliaComputing and Visualization in Science, Vol. 19 (2018), Iss. 5-6 P.47
https://doi.org/10.1007/s00791-018-0290-5 [Citations: 55] -
A divergence‐conforming hybridized discontinuous Galerkin method for the incompressible Reynolds‐averaged Navier‐Stokes equations
Peters, Eric L. | Evans, John A.International Journal for Numerical Methods in Fluids, Vol. 91 (2019), Iss. 3 P.112
https://doi.org/10.1002/fld.4745 [Citations: 7] -
Fluids Under Control
Numerical Simulation of Fluid-Structure-Acoustic Interactions Models of Human Phonation Process
Sváček, Petr | Valášek, Jan2023
https://doi.org/10.1007/978-3-031-27625-5_11 [Citations: 0] -
Preconditioning immersed isogeometric finite element methods with application to flow problems
de Prenter, F. | Verhoosel, C.V. | van Brummelen, E.H.Computer Methods in Applied Mechanics and Engineering, Vol. 348 (2019), Iss. P.604
https://doi.org/10.1016/j.cma.2019.01.030 [Citations: 39] -
A validated patient-specific FSI model for vascular access in haemodialysis
de Villiers, A. M. | McBride, A. T. | Reddy, B. D. | Franz, T. | Spottiswoode, B. S.Biomechanics and Modeling in Mechanobiology, Vol. 17 (2018), Iss. 2 P.479
https://doi.org/10.1007/s10237-017-0973-8 [Citations: 20] -
On the performance of the DG method with a directional do-nothing boundary condition
Garcia, Aureo Quintas | Gomes, Francisco Augusto Aparecido | Hecke, Mildred BallinJournal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 39 (2017), Iss. 10 P.3919
https://doi.org/10.1007/s40430-017-0868-8 [Citations: 1] -
Finite Element Methods for Incompressible Flow Problems
The Steady-State Navier–Stokes Equations
John, Volker
2016
https://doi.org/10.1007/978-3-319-45750-5_6 [Citations: 0] -
Numerical considerations for advection‐diffusion problems in cardiovascular hemodynamics
Lynch, Sabrina R. | Nama, Nitesh | Xu, Zelu | Arthurs, Christopher J. | Sahni, Onkar | Figueroa, C. AlbertoInternational Journal for Numerical Methods in Biomedical Engineering, Vol. 36 (2020), Iss. 9
https://doi.org/10.1002/cnm.3378 [Citations: 6] -
Analysis and assessment of a monolithic FSI finite element method
Lozovskiy, Alexander | Olshanskii, Maxim A. | Vassilevski, Yuri V.Computers & Fluids, Vol. 179 (2019), Iss. P.277
https://doi.org/10.1016/j.compfluid.2018.11.004 [Citations: 21] -
Determination of pressure data from velocity data with a view towards its application in cardiovascular mechanics. Part 2: A study of aortic valve stenosis
Švihlová, H. | Hron, J. | Málek, J. | Rajagopal, K.R. | Rajagopal, K.International Journal of Engineering Science, Vol. 113 (2017), Iss. P.37
https://doi.org/10.1016/j.ijengsci.2017.01.001 [Citations: 1] -
On existence, regularity and uniqueness of thermally coupled incompressible flows in a system of three dimensional pipes
Beneš, Michal | Pažanin, IgorNonlinear Analysis: Theory, Methods & Applications, Vol. 149 (2017), Iss. P.56
https://doi.org/10.1016/j.na.2016.10.007 [Citations: 10] -
Numerical simulation of fluid-structure interactions with stabilized finite element method
Sváček, Petr
Advances in Engineering Software, Vol. 113 (2017), Iss. P.96
https://doi.org/10.1016/j.advengsoft.2016.08.012 [Citations: 2] -
Pressure-correction projection method for modelling the incompressible fluid flow in porous media
Terekhov, Kirill M.
Russian Journal of Numerical Analysis and Mathematical Modelling, Vol. 38 (2023), Iss. 4 P.241
https://doi.org/10.1515/rnam-2023-0019 [Citations: 0] -
Personalized Computational Hemodynamics
Bibliography
2020
https://doi.org/10.1016/B978-0-12-815653-7.16001-4 [Citations: 0] -
Numerical Mathematics and Advanced Applications ENUMATH 2019
Numerical Approximation of Fluid-Structure Interaction Problem in a Closing Channel Near the Stability Boundary
Valášek, Jan | Sváček, Petr | Horáček, Jaromír2021
https://doi.org/10.1007/978-3-030-55874-1_107 [Citations: 0] -
Grad-div stabilized discretizations on S-type meshes for the Oseen problem
Franz, Sebastian | Höhne, Katharina | Matthies, GunarIMA Journal of Numerical Analysis, Vol. 38 (2018), Iss. 1 P.299
https://doi.org/10.1093/imanum/drw069 [Citations: 3] -
A Variational Multiscale Method for Particle Dispersion Modeling in the Atmosphere
Nishio, Y. | Janssens, B. | Limam, K. | van Beeck, J.Fluid Dynamics & Materials Processing, Vol. 19 (2023), Iss. 3 P.743
https://doi.org/10.32604/fdmp.2022.021848 [Citations: 0] -
Aeroacoustic computation of fluid-structure interaction problems with low Mach numbers
Valášek, Jan | Sváček, Petr | Dančová, P.EPJ Web of Conferences, Vol. 180 (2018), Iss. P.02113
https://doi.org/10.1051/epjconf/201818002113 [Citations: 0] -
On Multiple Solutions to the Steady Flow of Incompressible Fluids Subject to Do-nothing or Constant Traction Boundary Conditions on Artificial Boundaries
Lanzendörfer, M. | Hron, J.Journal of Mathematical Fluid Mechanics, Vol. 22 (2020), Iss. 1
https://doi.org/10.1007/s00021-019-0472-z [Citations: 4] -
Analysis of an electroless plating problem
Girault, Vivette | Pironneau, Olivier | Wu, Po-YiIMA Journal of Numerical Analysis, Vol. 42 (2022), Iss. 4 P.2884
https://doi.org/10.1093/imanum/drab075 [Citations: 1] -
Global Sensitivity Analysis of Four Chamber Heart Hemodynamics Using Surrogate Models
Karabelas, Elias | Longobardi, Stefano | Fuchsberger, Jana | Razeghi, Orod | Rodero, Cristobal | Strocchi, Marina | Rajani, Ronak | Haase, Gundolf | Plank, Gernot | Niederer, StevenIEEE Transactions on Biomedical Engineering, Vol. 69 (2022), Iss. 10 P.3216
https://doi.org/10.1109/TBME.2022.3163428 [Citations: 19] -
Drag computation for incompressible flows with a Nitsche’s type stabilization method
Capatina, Daniela | Luce, Robert | Trujillo, DavidComputer Methods in Applied Mechanics and Engineering, Vol. 360 (2020), Iss. P.112775
https://doi.org/10.1016/j.cma.2019.112775 [Citations: 0] -
Thixoviscoplastic flow simulations based on Houska thixotropic and Bingham viscoplastic models
Begum, Naheed | Ouazzi, Abderrahim | Turek, StefanPAMM, Vol. 24 (2024), Iss. 2
https://doi.org/10.1002/pamm.202400003 [Citations: 0] -
Source Identification of a Chemical Incident in an Urban Area
Fernández, Francisco J. | Vázquez-Méndez, Miguel E.Axioms, Vol. 10 (2021), Iss. 3 P.177
https://doi.org/10.3390/axioms10030177 [Citations: 0] -
A shape design problem for the Navier–Stokes flow with a convective boundary condition
Simon, J. S. H | Notsu, HirofumiComputational and Applied Mathematics, Vol. 41 (2022), Iss. 4
https://doi.org/10.1007/s40314-022-01876-5 [Citations: 0] -
Boundary and Interior Layers, Computational and Asymptotic Methods - BAIL 2014
Understanding the Limits of Inf-Sup Stable Galerkin-FEM for Incompressible Flows
Lube, Gert | Arndt, Daniel | Dallmann, Helene2015
https://doi.org/10.1007/978-3-319-25727-3_12 [Citations: 2] -
Determination of pressure data from velocity data with a view towards its application in cardiovascular mechanics. Part 2. A study of aortic valve stenosis
Švihlová, H. | Hron, J. | Málek, J. | Rajagopal, K.R. | Rajagopal, K.International Journal of Engineering Science, Vol. 114 (2017), Iss. P.1
https://doi.org/10.1016/j.ijengsci.2017.01.002 [Citations: 12] -
Numerical Mathematics and Advanced Applications ENUMATH 2015
Finite Elements for the Navier-Stokes Problem with Outflow Condition
Arndt, Daniel | Braack, Malte | Lube, Gert2016
https://doi.org/10.1007/978-3-319-39929-4_10 [Citations: 6] -
Numerical simulation of aeroelastic response of an airfoil in flow with laminar–turbulence transition
Sváček, Petr | Horáček, JaromírApplied Mathematics and Computation, Vol. 267 (2015), Iss. P.28
https://doi.org/10.1016/j.amc.2015.06.107 [Citations: 2] -
Modeling of the unsteady flow through a channel with an artificial outflow condition by the Navier–Stokes variational inequality
Kračmar, Stanislav | Neustupa, JiříMathematische Nachrichten, Vol. 291 (2018), Iss. 11-12 P.1801
https://doi.org/10.1002/mana.201700228 [Citations: 17] -
Numerical Mathematics and Advanced Applications ENUMATH 2015
Numerical Approximation of Interaction of Fluid Flow and Elastic Structure Vibrations
Valášek, Jan | Sváček, Petr | Horáček, Jaromír2016
https://doi.org/10.1007/978-3-319-39929-4_56 [Citations: 0] -
Boundary and Interior Layers, Computational and Asymptotic Methods - BAIL 2014
Outflow Conditions for the Navier-Stokes Equations with Skew-Symmetric Formulation of the Convective Term
Braack, Malte
2015
https://doi.org/10.1007/978-3-319-25727-3_4 [Citations: 1] -
On buoyancy‐driven viscous incompressible flows with various types of boundary conditions
Beneš, Michal | Kučera, Petr | Vacková, PetraZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 103 (2023), Iss. 11
https://doi.org/10.1002/zamm.202200529 [Citations: 0] -
A benchmark problem to evaluate implementational issues for three-dimensional flows of incompressible fluids subject to slip boundary conditions
Chabiniok, R. | Hron, J. | Jarolímová, A. | Málek, J. | Rajagopal, K.R. | Rajagopal, K. | Švihlová, H. | Tůma, K.Applications in Engineering Science, Vol. 6 (2021), Iss. P.100038
https://doi.org/10.1016/j.apples.2021.100038 [Citations: 3] -
Nonreflecting outlet boundary conditions for incompressible flows using SPH
Alvarado-Rodríguez, Carlos E. | Klapp, Jaime | Sigalotti, Leonardo Di G. | Domínguez, José M. | Cruz Sánchez, Eduardo de laComputers & Fluids, Vol. 159 (2017), Iss. P.177
https://doi.org/10.1016/j.compfluid.2017.09.020 [Citations: 20] -
Applications of Differential-Algebraic Equations: Examples and Benchmarks
Continuous, Semi-discrete, and Fully Discretised Navier-Stokes Equations
Altmann, R. | Heiland, J.2018
https://doi.org/10.1007/11221_2018_2 [Citations: 3] -
On study of the influence of the strength of nonlinear part of boundary condition on the outlet
Neustupa, T. | Winter, O.INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020, (2022), P.020005
https://doi.org/10.1063/5.0081486 [Citations: 0] -
ILU Preconditioners for Nonsymmetric Saddle-Point Matrices with Application to the Incompressible Navier--Stokes Equations
Konshin, Igor N. | Olshanskii, Maxim A. | Vassilevski, Yuri V.SIAM Journal on Scientific Computing, Vol. 37 (2015), Iss. 5 P.A2171
https://doi.org/10.1137/15M1012311 [Citations: 19] -
Artificial boundary conditions for linearized stationary incompressible viscous flow around rotating and translating body
Deuring, P. | Kračmar, S. | Nečasová, Š.Mathematische Nachrichten, Vol. 294 (2021), Iss. 1 P.56
https://doi.org/10.1002/mana.201900039 [Citations: 1] -
Solution of Fluid Dynamics Problems in Truncated Computational Domains
Potapov, I. I. | Snigur, K. S.Computational Mathematics and Mathematical Physics, Vol. 59 (2019), Iss. 3 P.484
https://doi.org/10.1134/S0965542519030138 [Citations: 0] -
Progress in Industrial Mathematics at ECMI 2016
Numerical Simulation of Flow Induced Vocal Folds Vibration by Stabilized Finite Element Method
Valášek, Jan | Sváček, Petr | Horáček, Jaromír2017
https://doi.org/10.1007/978-3-319-63082-3_111 [Citations: 0] -
Global attractor for a low order ODE model problem for transition to turbulence
Singler, John R.
Mathematical Methods in the Applied Sciences, Vol. 40 (2017), Iss. 8 P.2896
https://doi.org/10.1002/mma.4205 [Citations: 3] -
On the Application of Acoustic Analogies in the Numerical Simulation of Human Phonation Process
Valášek, J. | Kaltenbacher, M. | Sváček, P.Flow, Turbulence and Combustion, Vol. 102 (2019), Iss. 1 P.129
https://doi.org/10.1007/s10494-018-9900-z [Citations: 21] -
Determination of pressure data from velocity data with a view toward its application in cardiovascular mechanics. Part 1. Theoretical considerations
Švihlová, H. | Hron, J. | Málek, J. | Rajagopal, K.R. | Rajagopal, K.International Journal of Engineering Science, Vol. 105 (2016), Iss. P.108
https://doi.org/10.1016/j.ijengsci.2015.11.002 [Citations: 34] -
A finite element scheme for the numerical solution of the Navier–Stokes/Biot coupled problem
Lozovskiy, Alexander | Olshanskii, Maxim A. | Vassilevski, Yuri V.Russian Journal of Numerical Analysis and Mathematical Modelling, Vol. 37 (2022), Iss. 3 P.159
https://doi.org/10.1515/rnam-2022-0014 [Citations: 3] -
Aeroacoustic simulation of human phonation based on the flow-induced vocal fold vibrations including their contact
Valášek, Jan | Sváček, PetrAdvances in Engineering Software, Vol. 194 (2024), Iss. P.103652
https://doi.org/10.1016/j.advengsoft.2024.103652 [Citations: 0]