A Posteriori Error Estimates for Local $C^0$ Discontinuous Galerkin Methods for Kirchhoff Plate Bending Problems
Year: 2014
Journal of Computational Mathematics, Vol. 32 (2014), Iss. 6 : pp. 665–686
Abstract
We derive some residual-type a posteriori error estimates for the local $C^0$ discontinuous Galerkin (LCDG) approximations ([31]) of the Kirchhoff bending plate clamped on the boundary. The estimator is both reliable and efficient with respect to the moment-field approximation error in an energy norm. Some numerical experiments are reported to demonstrate theoretical results.
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jcm.1405-m4409
Journal of Computational Mathematics, Vol. 32 (2014), Iss. 6 : pp. 665–686
Published online: 2014-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 22
Keywords: Kirchhoff bending plate Discontinuous Galerkin method A posteriori error analysis.
-
A posteriori error estimate for the IPDGFEM of a Kirchhoff-Love bending plate
Eptaimeros, Konstantinos G.
INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, (2022), P.130004
https://doi.org/10.1063/5.0119870 [Citations: 0] -
Quasi-optimal convergence rate for an adaptive hybridizable $$C^0$$ C 0 discontinuous Galerkin method for Kirchhoff plates
Sun, Pengtao | Huang, XuehaiNumerische Mathematik, Vol. 139 (2018), Iss. 4 P.795
https://doi.org/10.1007/s00211-018-0953-7 [Citations: 2] -
A Posteriori Estimates for Conforming Kirchhoff Plate Elements
Gustafsson, Tom | Stenberg, Rolf | Videman, JuhaSIAM Journal on Scientific Computing, Vol. 40 (2018), Iss. 3 P.A1386
https://doi.org/10.1137/17M1137334 [Citations: 8]