A Posteriori Error Estimates for Local $C^0$ Discontinuous Galerkin Methods for Kirchhoff Plate Bending Problems

Year:    2014

Journal of Computational Mathematics, Vol. 32 (2014), Iss. 6 : pp. 665–686

Abstract

We derive some residual-type a posteriori error estimates for the local $C^0$ discontinuous Galerkin (LCDG) approximations ([31]) of the Kirchhoff bending plate clamped on the boundary. The estimator is both reliable and efficient with respect to the moment-field approximation error in an energy norm. Some numerical experiments are reported to demonstrate theoretical results.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1405-m4409

Journal of Computational Mathematics, Vol. 32 (2014), Iss. 6 : pp. 665–686

Published online:    2014-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    22

Keywords:    Kirchhoff bending plate Discontinuous Galerkin method A posteriori error analysis.

  1. A posteriori error estimate for the IPDGFEM of a Kirchhoff-Love bending plate

    Eptaimeros, Konstantinos G.

    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, (2022), P.130004

    https://doi.org/10.1063/5.0119870 [Citations: 0]
  2. Quasi-optimal convergence rate for an adaptive hybridizable $$C^0$$ C 0 discontinuous Galerkin method for Kirchhoff plates

    Sun, Pengtao | Huang, Xuehai

    Numerische Mathematik, Vol. 139 (2018), Iss. 4 P.795

    https://doi.org/10.1007/s00211-018-0953-7 [Citations: 2]
  3. A Posteriori Estimates for Conforming Kirchhoff Plate Elements

    Gustafsson, Tom | Stenberg, Rolf | Videman, Juha

    SIAM Journal on Scientific Computing, Vol. 40 (2018), Iss. 3 P.A1386

    https://doi.org/10.1137/17M1137334 [Citations: 8]