Error Estimate on a Fully Discrete Local Discontinuous Galerkin Method for Linear Convection-Diffusion Problem

Error Estimate on a Fully Discrete Local Discontinuous Galerkin Method for Linear Convection-Diffusion Problem

Year:    2013

Journal of Computational Mathematics, Vol. 31 (2013), Iss. 3 : pp. 283–307

Abstract

In this paper we present the error estimate for the fully discrete local discontinuous Galerkin algorithm to solve the linear convection-diffusion equation with Dirichlet boundary condition in one dimension. The time is advanced by the third order explicit total variation diminishing Runge-Kutta method under the reasonable temporal-spatial condition as general. The optimal error estimate in both space and time is obtained by aid of the energy technique, if we set the numerical flux and the intermediate boundary condition properly.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1212-m4174

Journal of Computational Mathematics, Vol. 31 (2013), Iss. 3 : pp. 283–307

Published online:    2013-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    25

Keywords:    Runge-Kutta Local discontinuous Galerkin method Convection-diffusion equation Error estimate.

  1. Third order implicit–explicit Runge–Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection–diffusion problems with Dirichlet boundary conditions

    Wang, Haijin | Zhang, Qiang | Shu, Chi-Wang

    Journal of Computational and Applied Mathematics, Vol. 342 (2018), Iss. P.164

    https://doi.org/10.1016/j.cam.2018.04.004 [Citations: 27]
  2. Implicit–Explicit Local Discontinuous Galerkin Methods with Generalized Alternating Numerical Fluxes for Convection–Diffusion Problems

    Wang, Haijin | Zhang, Qiang | Shu, Chi-Wang

    Journal of Scientific Computing, Vol. 81 (2019), Iss. 3 P.2080

    https://doi.org/10.1007/s10915-019-01072-4 [Citations: 17]
  3. Error estimates of the third order runge-kutta alternating evolution discontinuous galerkin method for convection-diffusion problems

    Liu, Hailiang | Wen, Hairui

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 52 (2018), Iss. 5 P.1709

    https://doi.org/10.1051/m2an/2018020 [Citations: 1]
  4. Analysis of direct discontinuous Galerkin methods for multi-dimensional convection–diffusion equations

    Liu, Hailiang

    Numerische Mathematik, Vol. 147 (2021), Iss. 4 P.839

    https://doi.org/10.1007/s00211-021-01183-x [Citations: 4]
  5. Optimal error estimate of the local discontinuous Galerkin methods based on the generalized alternating numerical fluxes for nonlinear convection–diffusion equations

    Cheng, Yao

    Numerical Algorithms, Vol. 80 (2019), Iss. 4 P.1329

    https://doi.org/10.1007/s11075-018-0529-8 [Citations: 4]
  6. An oscillation free local discontinuous Galerkin method for nonlinear degenerate parabolic equations

    Tao, Qi | Liu, Yong | Jiang, Yan | Lu, Jianfang

    Numerical Methods for Partial Differential Equations, Vol. 39 (2023), Iss. 4 P.3145

    https://doi.org/10.1002/num.23003 [Citations: 4]
  7. A local discontinuous Galerkin method for nonlinear parabolic SPDEs

    Li, Yunzhang | Shu, Chi-Wang | Tang, Shanjian

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 55 (2021), Iss. P.S187

    https://doi.org/10.1051/m2an/2020026 [Citations: 9]
  8. Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices

    Liu, YunXian | Shu, Chi-Wang

    Science China Mathematics, Vol. 59 (2016), Iss. 1 P.115

    https://doi.org/10.1007/s11425-015-5055-8 [Citations: 23]
  9. A hybrid discontinuous Galerkin scheme for multi-scale kinetic equations

    Filbet, Francis | Xiong, Tao

    Journal of Computational Physics, Vol. 372 (2018), Iss. P.841

    https://doi.org/10.1016/j.jcp.2018.06.064 [Citations: 8]
  10. Stability analysis and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for nonlinear convection–diffusion problems

    Wang, Haijin | Shu, Chi-Wang | Zhang, Qiang

    Applied Mathematics and Computation, Vol. 272 (2016), Iss. P.237

    https://doi.org/10.1016/j.amc.2015.02.067 [Citations: 18]
  11. Optimal Energy Conserving Local Discontinuous Galerkin Methods for Elastodynamics: Semi and Fully Discrete Error Analysis

    Guo, Ruchi | Xing, Yulong

    Journal of Scientific Computing, Vol. 87 (2021), Iss. 1

    https://doi.org/10.1007/s10915-021-01418-x [Citations: 3]
  12. Local discontinuous Galerkin methods with explicit Runge‐Kutta time marching for nonlinear carburizing model

    Xia, Chenghui | Li, Ying | Wang, Haijin

    Mathematical Methods in the Applied Sciences, Vol. 41 (2018), Iss. 12 P.4376

    https://doi.org/10.1002/mma.4898 [Citations: 7]
  13. High Order Maximum-Principle-Preserving Discontinuous Galerkin Method for Convection-Diffusion Equations

    Xiong, Tao | Qiu, Jing-Mei | Xu, Zhengfu

    SIAM Journal on Scientific Computing, Vol. 37 (2015), Iss. 2 P.A583

    https://doi.org/10.1137/140965326 [Citations: 33]
  14. Stability and Error Estimates of Local Discontinuous Galerkin Methods with Implicit-Explicit Time-Marching for Advection-Diffusion Problems

    Wang, Haijin | Shu, Chi-Wang | Zhang, Qiang

    SIAM Journal on Numerical Analysis, Vol. 53 (2015), Iss. 1 P.206

    https://doi.org/10.1137/140956750 [Citations: 107]
  15. Local Analysis of Local Discontinuous Galerkin Method for the Time-Dependent Singularly Perturbed Problem

    Cheng, Yao | Zhang, Feng | Zhang, Qiang

    Journal of Scientific Computing, Vol. 63 (2015), Iss. 2 P.452

    https://doi.org/10.1007/s10915-014-9901-6 [Citations: 11]
  16. Stability analysis and error estimates of implicit–explicit Runge–Kutta local discontinuous Galerkin methods for nonlinear fractional convection–diffusion problems

    Aboelenen, Tarek

    Computational and Applied Mathematics, Vol. 41 (2022), Iss. 6

    https://doi.org/10.1007/s40314-022-01954-8 [Citations: 4]
  17. Local Analysis of the Local Discontinuous Galerkin Method with Generalized Alternating Numerical Flux for One-Dimensional Singularly Perturbed Problem

    Cheng, Yao | Zhang, Qiang

    Journal of Scientific Computing, Vol. 72 (2017), Iss. 2 P.792

    https://doi.org/10.1007/s10915-017-0378-y [Citations: 20]
  18. Local discontinuous Galerkin method coupled with the implicit‐explicit Runge–Kutta method for the time‐dependent micropolar fluid equations

    Li, Mengqi | Liu, Demin

    International Journal for Numerical Methods in Fluids, Vol. 96 (2024), Iss. 7 P.1137

    https://doi.org/10.1002/fld.5282 [Citations: 0]