Year: 2013
Author: Leihong Zhang, Weihong Yang, Lizhi Liao
Journal of Computational Mathematics, Vol. 31 (2013), Iss. 4 : pp. 335–354
Abstract
In this paper, we consider the solution of the standard linear programming (LP). A remarkable result in LP claims that all optimal solutions form an optimal face of the underlying polyhedron. In practice, many real-world problems have infinitely many optimal solutions and pursuing the optimal face, not just an optimal vertex, is quite desirable. The face algorithm proposed by Pan [19] targets at the optimal face by iterating from face to face, along an orthogonal projection of the negative objective gradient onto a relevant null space. The algorithm exhibits a favorable numerical performance by comparing the simplex method. In this paper, we further investigate the face algorithm by proposing an improved implementation. In exact arithmetic computation, the new algorithm generates the same sequence as Pan's face algorithm, but uses less computational costs per iteration, and enjoys favorable properties for sparse problems.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jcm.1301-m4106
Journal of Computational Mathematics, Vol. 31 (2013), Iss. 4 : pp. 335–354
Published online: 2013-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 20
Keywords: Linear programming Level face Optimal face Rank-one correction.
Author Details
-
Linear Programming Computation
Dual Pivot Rule
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_12 [Citations: 0] -
Linear Programming Computation
Interior-Point Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_9 [Citations: 0] -
Linear Programming Computation
Pivotal Interior-Point Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_24 [Citations: 0] -
Linear Programming Computation
Simplex Phase-I Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_13 [Citations: 0] -
MULKASE: a novel approach for key-aggregate searchable encryption for multi-owner data
Padhya, Mukti | Jinwala, Devesh C.Frontiers of Information Technology & Electronic Engineering, Vol. 20 (2019), Iss. 12 P.1717
https://doi.org/10.1631/FITEE.1800192 [Citations: 12] -
Linear Programming Computation
Face Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_22 [Citations: 0] -
Assignment Algorithms for Modeling Resource Contention in Multirobot Task Allocation
Nam, Changjoo | Shell, Dylan A.IEEE Transactions on Automation Science and Engineering, Vol. 12 (2015), Iss. 3 P.889
https://doi.org/10.1109/TASE.2015.2415514 [Citations: 35] -
Linear Programming Computation
Implementation of the Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_5 [Citations: 0] -
Linear Programming Computation
D-Reduced Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_17 [Citations: 0] -
Linear Programming Computation
Pivot Rule
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_11 [Citations: 0] -
Linear Programming Computation
Sensitivity Analysis and Parametric LP
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_6 [Citations: 0] -
Linear Programming Computation
Dual Simplex Phase-l Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_14 [Citations: 0] -
Assignment algorithms for modeling resource contention and interference in multi-robot task-allocation
Nam, Changjoo | Shell, Dylan A.2014 IEEE International Conference on Robotics and Automation (ICRA), (2014), P.2158
https://doi.org/10.1109/ICRA.2014.6907156 [Citations: 16] -
Linear Programming Computation
Decomposition Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_8 [Citations: 0] -
Linear Programming Computation
Dual Deficient-Basis Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_21 [Citations: 0] -
Linear Programming Computation
Variants of the Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_7 [Citations: 0] -
Linear Programming Computation
Dual Face Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_23 [Citations: 1] -
Linear Programming Computation
Criss-Cross Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_18 [Citations: 0] -
Linear Programming Computation
Face Method with Cholesky Factorization
PAN, Ping-Qi
2023
https://doi.org/10.1007/978-981-19-0147-8_21 [Citations: 0] -
Linear Programming Computation
Deficient-Basis Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_20 [Citations: 0] -
Linear Programming Computation
Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_3 [Citations: 1] -
Linear Programming Computation
Duality Principle and Dual Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_4 [Citations: 0] -
Linear Programming Computation
Integer Linear Programming (ILP)
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_10 [Citations: 2] -
Linear Programming Computation
Special Topics
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_25 [Citations: 0] -
Linear Programming Computation
Improved Reduced Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_16 [Citations: 0] -
Linear Programming Computation
Geometry of the Feasible Region
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_2 [Citations: 0] -
Linear Programming Computation
Generalizing Reduced Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_19 [Citations: 0] -
Linear Programming Computation
Reduced Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_15 [Citations: 0] -
Linear Programming Computation
Introduction
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_1 [Citations: 0] -
A review of “linear programming computation” by Ping-Qi Pan
Shi, Yangyang | Zhang, Lei-Hong | Zhu, WenxingEuropean Journal of Operational Research, Vol. 267 (2018), Iss. 3 P.1182
https://doi.org/10.1016/j.ejor.2017.10.051 [Citations: 1]