An Anisotropic Locking-Free Nonconforming Triangular Finite Element Method for Planar Linear Elasticity Problem

Year:    2012

Journal of Computational Mathematics, Vol. 30 (2012), Iss. 2 : pp. 124–138

Abstract

The main aim of this paper is to study the nonconforming linear triangular Crouzeix-Raviart type finite element approximation of planar linear elasticity problem with the pure displacement boundary value on anisotropic general triangular meshes satisfying the maximal angle condition and coordinate system condition. The optimal order error estimates of energy norm and $L^2$-norm are obtained, which are independent of lamé parameter $λ$. Numerical results are given to demonstrate the validity of our theoretical analysis.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1106-m3520

Journal of Computational Mathematics, Vol. 30 (2012), Iss. 2 : pp. 124–138

Published online:    2012-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    15

Keywords:    Planar elasticity Nonconforming element Locking-free Anisotropic meshes.

  1. The Crouzeix-Raviart type nonconforming finite element method for the nonstationary Navier-Stokes equations on anisotropic meshes

    Shi, Dong-yang

    Wang, Hui-min

    Acta Mathematicae Applicatae Sinica, English Series, Vol. 30 (2014), Iss. 1 P.145

    https://doi.org/10.1007/s10255-014-0274-2 [Citations: 2]