Year: 2012
Journal of Computational Mathematics, Vol. 30 (2012), Iss. 4 : pp. 337–353
Abstract
The elementary analysis of this paper presents explicit expressions of the constants in the a priori error estimates for the lowest-order Courant, Crouzeix-Raviart nonconforming and Raviart-Thomas mixed finite element methods in the Poisson model problem. The three constants and their dependences on some maximal angle in the triangulation are indeed all comparable and allow accurate a priori error control.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jcm.1108-m3677
Journal of Computational Mathematics, Vol. 30 (2012), Iss. 4 : pp. 337–353
Published online: 2012-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 17
Keywords: Error estimates Conforming Nonconforming Mixed Finite element method.
-
Guaranteed and Robust a Posteriori Bounds for Laplace Eigenvalues and Eigenvectors: Conforming Approximations
Cancès, Eric | Dusson, Geneviève | Maday, Yvon | Stamm, Benjamin | Vohralík, MartinSIAM Journal on Numerical Analysis, Vol. 55 (2017), Iss. 5 P.2228
https://doi.org/10.1137/15M1038633 [Citations: 26] -
A Priori and a Posteriori Error Analysis of the Crouzeix–Raviart and Morley FEM with Original and Modified Right-Hand Sides
Carstensen, Carsten | Nataraj, NeelaComputational Methods in Applied Mathematics, Vol. 21 (2021), Iss. 2 P.289
https://doi.org/10.1515/cmam-2021-0029 [Citations: 12] -
Unifying a posteriori error analysis of five piecewise quadratic discretisations for the biharmonic equation
Carstensen, Carsten | Gräßle, Benedikt | Nataraj, NeelaJournal of Numerical Mathematics, Vol. 0 (2023), Iss. 0
https://doi.org/10.1515/jnma-2022-0092 [Citations: 0] -
Pointwise adaptive non-conforming finite element method for the obstacle problem
Porwal, Kamana | Singla, RiteshComputational and Applied Mathematics, Vol. 43 (2024), Iss. 3
https://doi.org/10.1007/s40314-024-02641-6 [Citations: 1] -
A lowest-degree quasi-conforming finite element de Rham complex on general quadrilateral grids by piecewise polynomials
Quan, Qimeng | Ji, Xia | Zhang, ShuoCalcolo, Vol. 59 (2022), Iss. 1
https://doi.org/10.1007/s10092-021-00447-0 [Citations: 0] -
On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation
Chaumont-Frelet, T. | Ern, A. | Vohralík, M.Numerische Mathematik, Vol. 148 (2021), Iss. 3 P.525
https://doi.org/10.1007/s00211-021-01192-w [Citations: 12] -
A posteriori error estimates for nonconforming finite element methods for fourth-order problems on rectangles
Carstensen, Carsten | Gallistl, Dietmar | Hu, JunNumerische Mathematik, Vol. 124 (2013), Iss. 2 P.309
https://doi.org/10.1007/s00211-012-0513-5 [Citations: 13] -
Guaranteed lower bounds for eigenvalues
Carstensen, Carsten | Gedicke, JoschaMathematics of Computation, Vol. 83 (2014), Iss. 290 P.2605
https://doi.org/10.1090/S0025-5718-2014-02833-0 [Citations: 60] -
Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities and clusters
Cancès, Eric | Dusson, Geneviève | Maday, Yvon | Stamm, Benjamin | Vohralík, MartinMathematics of Computation, Vol. 89 (2020), Iss. 326 P.2563
https://doi.org/10.1090/mcom/3549 [Citations: 15] -
OptimalL2velocity error estimate for a modified pressure-robust Crouzeix–Raviart Stokes element
Linke, A. | Merdon, C. | Wollner, W.IMA Journal of Numerical Analysis, Vol. 37 (2017), Iss. 1 P.354
https://doi.org/10.1093/imanum/drw019 [Citations: 16] -
Nonconforming FEMs for an Optimal Design Problem
Carstensen, C. | Liu, D. J.SIAM Journal on Numerical Analysis, Vol. 53 (2015), Iss. 2 P.874
https://doi.org/10.1137/130927103 [Citations: 17] -
Error Control, Adaptive Discretizations, and Applications, Part 1
Exact a posteriori error control for variational problems via convex duality and explicit flux reconstruction
Bartels, Sören | Kaltenbach, Alex2024
https://doi.org/10.1016/bs.aams.2024.04.001 [Citations: 0] -
Discrete Reliability for Crouzeix--Raviart FEMs
Carstensen, Carsten | Gallistl, Dietmar | Schedensack, MiraSIAM Journal on Numerical Analysis, Vol. 51 (2013), Iss. 5 P.2935
https://doi.org/10.1137/130915856 [Citations: 12] -
Quantitative Anderson localization of Schrödinger eigenstates under disorder potentials
Altmann, Robert | Henning, Patrick | Peterseim, DanielMathematical Models and Methods in Applied Sciences, Vol. 30 (2020), Iss. 05 P.917
https://doi.org/10.1142/S0218202520500190 [Citations: 17] -
Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework
Cancès, Eric | Dusson, Geneviève | Maday, Yvon | Stamm, Benjamin | Vohralík, MartinNumerische Mathematik, Vol. 140 (2018), Iss. 4 P.1033
https://doi.org/10.1007/s00211-018-0984-0 [Citations: 20] -
Efficient Discrete Lagrange Multipliers in three first-order finite element discretizations for the A Posteriori Error Control in an Obstacle Problem
Carstensen, C. | Köhler, K.SIAM Journal on Numerical Analysis, Vol. 55 (2017), Iss. 1 P.349
https://doi.org/10.1137/15M1033770 [Citations: 4] -
Stabilization-free HHO a posteriori error control
Bertrand, Fleurianne | Carstensen, Carsten | Gräßle, Benedikt | Tran, Ngoc TienNumerische Mathematik, Vol. 154 (2023), Iss. 3-4 P.369
https://doi.org/10.1007/s00211-023-01366-8 [Citations: 3] -
Virtual element methods for Biot–Kirchhoff poroelasticity
Khot, Rekha | Mora, David | Ruiz-Baier, RicardoMathematics of Computation, Vol. (2024), Iss.
https://doi.org/10.1090/mcom/3983 [Citations: 0] -
Direct Guaranteed Lower Eigenvalue Bounds with Optimal a Priori Convergence Rates for the Bi-Laplacian
Carstensen, Carsten | Puttkammer, SophieSIAM Journal on Numerical Analysis, Vol. 61 (2023), Iss. 2 P.812
https://doi.org/10.1137/21M139921X [Citations: 5] -
Guaranteed lower eigenvalue bounds for two spectral problems arising in fluid mechanics
Zhang, Yu | Yang, YiduComputers & Mathematics with Applications, Vol. 90 (2021), Iss. P.66
https://doi.org/10.1016/j.camwa.2021.03.005 [Citations: 4] -
Guaranteed Energy Error Estimators for a Modified Robust Crouzeix–Raviart Stokes Element
Linke, A. | Merdon, C.Journal of Scientific Computing, Vol. 64 (2015), Iss. 2 P.541
https://doi.org/10.1007/s10915-014-9943-9 [Citations: 3] -
Nonconforming FEM for the obstacle problem
Carstensen, C. | Köhler, K.IMA Journal of Numerical Analysis, Vol. 37 (2017), Iss. 1 P.64
https://doi.org/10.1093/imanum/drw005 [Citations: 13] -
Guaranteed lower eigenvalue bounds for the biharmonic equation
Carstensen, Carsten | Gallistl, DietmarNumerische Mathematik, Vol. 126 (2014), Iss. 1 P.33
https://doi.org/10.1007/s00211-013-0559-z [Citations: 60] -
A priori and a posteriori error analysis of the lowest-order NCVEM for second-order linear indefinite elliptic problems
Carstensen, Carsten | Khot, Rekha | Pani, Amiya K.Numerische Mathematik, Vol. 151 (2022), Iss. 3 P.551
https://doi.org/10.1007/s00211-022-01296-x [Citations: 6] -
Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems
Coupling of Fluid Flow and Solute Transport Using a Divergence-Free Reconstruction of the Crouzeix-Raviart Element
Fuhrmann, Jürgen | Linke, Alexander | Merdon, Christian2014
https://doi.org/10.1007/978-3-319-05591-6_58 [Citations: 0] -
Crouzeix–Raviart Finite Element Approximation for the Parabolic Obstacle Problem
Gudi, Thirupathi | Majumder, PapriComputational Methods in Applied Mathematics, Vol. 20 (2020), Iss. 2 P.273
https://doi.org/10.1515/cmam-2019-0057 [Citations: 3] -
Lowest-order equivalent nonstandard finite element methods for biharmonic plates
Carstensen, Carsten | Nataraj, NeelaESAIM: Mathematical Modelling and Numerical Analysis, Vol. 56 (2022), Iss. 1 P.41
https://doi.org/10.1051/m2an/2021085 [Citations: 7] -
Adaptive finite element methods for scalar double‐well problem
Li, Bingzhen | Liu, DongjieNumerical Methods for Partial Differential Equations, Vol. 40 (2024), Iss. 5
https://doi.org/10.1002/num.23096 [Citations: 0] -
Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods
Lederer, Philip Lukas | Merdon, Christian | Schöberl, JoachimNumerische Mathematik, Vol. 142 (2019), Iss. 3 P.713
https://doi.org/10.1007/s00211-019-01049-3 [Citations: 8] -
An Adaptive Least-Squares FEM for Linear Elasticity with Optimal Convergence Rates
Bringmann, P. | Carstensen, C. | Starke, G.SIAM Journal on Numerical Analysis, Vol. 56 (2018), Iss. 1 P.428
https://doi.org/10.1137/16M1083797 [Citations: 12] -
Constants in Discrete Poincaré and Friedrichs Inequalities and Discrete Quasi-Interpolation
Carstensen, Carsten | Hellwig, FriederikeComputational Methods in Applied Mathematics, Vol. 18 (2018), Iss. 3 P.433
https://doi.org/10.1515/cmam-2017-0044 [Citations: 12] -
The adaptive finite element method for the P-Laplace problem
Liu, D.J. | Chen, Z.R.Applied Numerical Mathematics, Vol. 152 (2020), Iss. P.323
https://doi.org/10.1016/j.apnum.2019.11.018 [Citations: 4] -
A correction method for finding lower bounds of eigenvalues of the second‐order elliptic and Stokes operators
Zhang, Yu | Yang, YiduNumerical Methods for Partial Differential Equations, Vol. 35 (2019), Iss. 6 P.2149
https://doi.org/10.1002/num.22406 [Citations: 2] -
Robust Adaptive $hp$ Discontinuous Galerkin Finite Element Methods for the Helmholtz Equation
Congreve, Scott | Gedicke, Joscha | Perugia, IlariaSIAM Journal on Scientific Computing, Vol. 41 (2019), Iss. 2 P.A1121
https://doi.org/10.1137/18M1207909 [Citations: 5]