Explicit Error Estimates for Courant, Crouzeix-Raviart and Raviart-Thomas Finite Element Methods

Explicit Error Estimates for Courant, Crouzeix-Raviart and Raviart-Thomas Finite Element Methods

Year:    2012

Journal of Computational Mathematics, Vol. 30 (2012), Iss. 4 : pp. 337–353

Abstract

The elementary analysis of this paper presents explicit expressions of the constants in the a priori error estimates for the lowest-order Courant, Crouzeix-Raviart nonconforming and Raviart-Thomas mixed finite element methods in the Poisson model problem. The three constants and their dependences on some maximal angle in the triangulation are indeed all comparable and allow accurate a priori error control.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1108-m3677

Journal of Computational Mathematics, Vol. 30 (2012), Iss. 4 : pp. 337–353

Published online:    2012-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    17

Keywords:    Error estimates Conforming Nonconforming Mixed Finite element method.

  1. Guaranteed and Robust a Posteriori Bounds for Laplace Eigenvalues and Eigenvectors: Conforming Approximations

    Cancès, Eric | Dusson, Geneviève | Maday, Yvon | Stamm, Benjamin | Vohralík, Martin

    SIAM Journal on Numerical Analysis, Vol. 55 (2017), Iss. 5 P.2228

    https://doi.org/10.1137/15M1038633 [Citations: 26]
  2. A Priori and a Posteriori Error Analysis of the Crouzeix–Raviart and Morley FEM with Original and Modified Right-Hand Sides

    Carstensen, Carsten | Nataraj, Neela

    Computational Methods in Applied Mathematics, Vol. 21 (2021), Iss. 2 P.289

    https://doi.org/10.1515/cmam-2021-0029 [Citations: 12]
  3. Unifying a posteriori error analysis of five piecewise quadratic discretisations for the biharmonic equation

    Carstensen, Carsten | Gräßle, Benedikt | Nataraj, Neela

    Journal of Numerical Mathematics, Vol. 0 (2023), Iss. 0

    https://doi.org/10.1515/jnma-2022-0092 [Citations: 0]
  4. Pointwise adaptive non-conforming finite element method for the obstacle problem

    Porwal, Kamana | Singla, Ritesh

    Computational and Applied Mathematics, Vol. 43 (2024), Iss. 3

    https://doi.org/10.1007/s40314-024-02641-6 [Citations: 1]
  5. A lowest-degree quasi-conforming finite element de Rham complex on general quadrilateral grids by piecewise polynomials

    Quan, Qimeng | Ji, Xia | Zhang, Shuo

    Calcolo, Vol. 59 (2022), Iss. 1

    https://doi.org/10.1007/s10092-021-00447-0 [Citations: 0]
  6. On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation

    Chaumont-Frelet, T. | Ern, A. | Vohralík, M.

    Numerische Mathematik, Vol. 148 (2021), Iss. 3 P.525

    https://doi.org/10.1007/s00211-021-01192-w [Citations: 12]
  7. A posteriori error estimates for nonconforming finite element methods for fourth-order problems on rectangles

    Carstensen, Carsten | Gallistl, Dietmar | Hu, Jun

    Numerische Mathematik, Vol. 124 (2013), Iss. 2 P.309

    https://doi.org/10.1007/s00211-012-0513-5 [Citations: 13]
  8. Guaranteed lower bounds for eigenvalues

    Carstensen, Carsten | Gedicke, Joscha

    Mathematics of Computation, Vol. 83 (2014), Iss. 290 P.2605

    https://doi.org/10.1090/S0025-5718-2014-02833-0 [Citations: 60]
  9. Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities and clusters

    Cancès, Eric | Dusson, Geneviève | Maday, Yvon | Stamm, Benjamin | Vohralík, Martin

    Mathematics of Computation, Vol. 89 (2020), Iss. 326 P.2563

    https://doi.org/10.1090/mcom/3549 [Citations: 15]
  10. OptimalL2velocity error estimate for a modified pressure-robust Crouzeix–Raviart Stokes element

    Linke, A. | Merdon, C. | Wollner, W.

    IMA Journal of Numerical Analysis, Vol. 37 (2017), Iss. 1 P.354

    https://doi.org/10.1093/imanum/drw019 [Citations: 16]
  11. Nonconforming FEMs for an Optimal Design Problem

    Carstensen, C. | Liu, D. J.

    SIAM Journal on Numerical Analysis, Vol. 53 (2015), Iss. 2 P.874

    https://doi.org/10.1137/130927103 [Citations: 17]
  12. Error Control, Adaptive Discretizations, and Applications, Part 1

    Exact a posteriori error control for variational problems via convex duality and explicit flux reconstruction

    Bartels, Sören | Kaltenbach, Alex

    2024

    https://doi.org/10.1016/bs.aams.2024.04.001 [Citations: 0]
  13. Discrete Reliability for Crouzeix--Raviart FEMs

    Carstensen, Carsten | Gallistl, Dietmar | Schedensack, Mira

    SIAM Journal on Numerical Analysis, Vol. 51 (2013), Iss. 5 P.2935

    https://doi.org/10.1137/130915856 [Citations: 12]
  14. Quantitative Anderson localization of Schrödinger eigenstates under disorder potentials

    Altmann, Robert | Henning, Patrick | Peterseim, Daniel

    Mathematical Models and Methods in Applied Sciences, Vol. 30 (2020), Iss. 05 P.917

    https://doi.org/10.1142/S0218202520500190 [Citations: 17]
  15. Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework

    Cancès, Eric | Dusson, Geneviève | Maday, Yvon | Stamm, Benjamin | Vohralík, Martin

    Numerische Mathematik, Vol. 140 (2018), Iss. 4 P.1033

    https://doi.org/10.1007/s00211-018-0984-0 [Citations: 20]
  16. Efficient Discrete Lagrange Multipliers in three first-order finite element discretizations for the A Posteriori Error Control in an Obstacle Problem

    Carstensen, C. | Köhler, K.

    SIAM Journal on Numerical Analysis, Vol. 55 (2017), Iss. 1 P.349

    https://doi.org/10.1137/15M1033770 [Citations: 4]
  17. Stabilization-free HHO a posteriori error control

    Bertrand, Fleurianne | Carstensen, Carsten | Gräßle, Benedikt | Tran, Ngoc Tien

    Numerische Mathematik, Vol. 154 (2023), Iss. 3-4 P.369

    https://doi.org/10.1007/s00211-023-01366-8 [Citations: 3]
  18. Virtual element methods for Biot–Kirchhoff poroelasticity

    Khot, Rekha | Mora, David | Ruiz-Baier, Ricardo

    Mathematics of Computation, Vol. (2024), Iss.

    https://doi.org/10.1090/mcom/3983 [Citations: 0]
  19. Direct Guaranteed Lower Eigenvalue Bounds with Optimal a Priori Convergence Rates for the Bi-Laplacian

    Carstensen, Carsten | Puttkammer, Sophie

    SIAM Journal on Numerical Analysis, Vol. 61 (2023), Iss. 2 P.812

    https://doi.org/10.1137/21M139921X [Citations: 5]
  20. Guaranteed lower eigenvalue bounds for two spectral problems arising in fluid mechanics

    Zhang, Yu | Yang, Yidu

    Computers & Mathematics with Applications, Vol. 90 (2021), Iss. P.66

    https://doi.org/10.1016/j.camwa.2021.03.005 [Citations: 4]
  21. Guaranteed Energy Error Estimators for a Modified Robust Crouzeix–Raviart Stokes Element

    Linke, A. | Merdon, C.

    Journal of Scientific Computing, Vol. 64 (2015), Iss. 2 P.541

    https://doi.org/10.1007/s10915-014-9943-9 [Citations: 3]
  22. Nonconforming FEM for the obstacle problem

    Carstensen, C. | Köhler, K.

    IMA Journal of Numerical Analysis, Vol. 37 (2017), Iss. 1 P.64

    https://doi.org/10.1093/imanum/drw005 [Citations: 13]
  23. Guaranteed lower eigenvalue bounds for the biharmonic equation

    Carstensen, Carsten | Gallistl, Dietmar

    Numerische Mathematik, Vol. 126 (2014), Iss. 1 P.33

    https://doi.org/10.1007/s00211-013-0559-z [Citations: 60]
  24. A priori and a posteriori error analysis of the lowest-order NCVEM for second-order linear indefinite elliptic problems

    Carstensen, Carsten | Khot, Rekha | Pani, Amiya K.

    Numerische Mathematik, Vol. 151 (2022), Iss. 3 P.551

    https://doi.org/10.1007/s00211-022-01296-x [Citations: 6]
  25. Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems

    Coupling of Fluid Flow and Solute Transport Using a Divergence-Free Reconstruction of the Crouzeix-Raviart Element

    Fuhrmann, Jürgen | Linke, Alexander | Merdon, Christian

    2014

    https://doi.org/10.1007/978-3-319-05591-6_58 [Citations: 0]
  26. Crouzeix–Raviart Finite Element Approximation for the Parabolic Obstacle Problem

    Gudi, Thirupathi | Majumder, Papri

    Computational Methods in Applied Mathematics, Vol. 20 (2020), Iss. 2 P.273

    https://doi.org/10.1515/cmam-2019-0057 [Citations: 3]
  27. Lowest-order equivalent nonstandard finite element methods for biharmonic plates

    Carstensen, Carsten | Nataraj, Neela

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 56 (2022), Iss. 1 P.41

    https://doi.org/10.1051/m2an/2021085 [Citations: 7]
  28. Adaptive finite element methods for scalar double‐well problem

    Li, Bingzhen | Liu, Dongjie

    Numerical Methods for Partial Differential Equations, Vol. 40 (2024), Iss. 5

    https://doi.org/10.1002/num.23096 [Citations: 0]
  29. Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods

    Lederer, Philip Lukas | Merdon, Christian | Schöberl, Joachim

    Numerische Mathematik, Vol. 142 (2019), Iss. 3 P.713

    https://doi.org/10.1007/s00211-019-01049-3 [Citations: 8]
  30. An Adaptive Least-Squares FEM for Linear Elasticity with Optimal Convergence Rates

    Bringmann, P. | Carstensen, C. | Starke, G.

    SIAM Journal on Numerical Analysis, Vol. 56 (2018), Iss. 1 P.428

    https://doi.org/10.1137/16M1083797 [Citations: 12]
  31. Constants in Discrete Poincaré and Friedrichs Inequalities and Discrete Quasi-Interpolation

    Carstensen, Carsten | Hellwig, Friederike

    Computational Methods in Applied Mathematics, Vol. 18 (2018), Iss. 3 P.433

    https://doi.org/10.1515/cmam-2017-0044 [Citations: 12]
  32. The adaptive finite element method for the P-Laplace problem

    Liu, D.J. | Chen, Z.R.

    Applied Numerical Mathematics, Vol. 152 (2020), Iss. P.323

    https://doi.org/10.1016/j.apnum.2019.11.018 [Citations: 4]
  33. A correction method for finding lower bounds of eigenvalues of the second‐order elliptic and Stokes operators

    Zhang, Yu | Yang, Yidu

    Numerical Methods for Partial Differential Equations, Vol. 35 (2019), Iss. 6 P.2149

    https://doi.org/10.1002/num.22406 [Citations: 2]
  34. Robust Adaptive $hp$ Discontinuous Galerkin Finite Element Methods for the Helmholtz Equation

    Congreve, Scott | Gedicke, Joscha | Perugia, Ilaria

    SIAM Journal on Scientific Computing, Vol. 41 (2019), Iss. 2 P.A1121

    https://doi.org/10.1137/18M1207909 [Citations: 5]