Journals
Resources
About Us
Open Access

The Best $L^2$ Norm Error Estimate of Lower Order Finite Element Methods for the Fourth Order Problem

The Best $L^2$ Norm Error Estimate of Lower Order Finite Element Methods for the Fourth Order Problem

Year:    2012

Journal of Computational Mathematics, Vol. 30 (2012), Iss. 5 : pp. 449–460

Abstract

In the paper, we analyze the $L^2$ norm error estimate of lower order finite element methods for the fourth order problem. We prove that the best error estimate in the $L^2$ norm of the finite element solution is of second order, which can not be improved generally. The main ingredients are the saturation condition established for these elements and an identity for the error in the energy norm of the finite element solution. The result holds for most of the popular lower order finite element methods in the literature including: the Powell-Sabin $C^1-P_2$ macro element, the nonconforming Morley element, the $C^1-Q_2$ macro element, the nonconforming rectangle Morley element, and the nonconforming incomplete biquadratic element. In addition, the result actually applies to the nonconforming Adini element, the nonconforming Fraeijs de Veubeke elements, and the nonconforming Wang-Xu element and the Wang-Shi-Xu element provided that the saturation condition holds for them. This result solves one long standing problem in the literature: can the $L^2$ norm error estimate of lower order finite element methods of the fourth order problem be two order higher than the error estimate in the energy norm?

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1203-m3855

Journal of Computational Mathematics, Vol. 30 (2012), Iss. 5 : pp. 449–460

Published online:    2012-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:    $L^2$ norm error estimate Energy norm error estimate Conforming Nonconforming The Kirchhoff plate.

  1. Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods

    Hu, Jun | Huang, Yunqing | Shen, Quan

    Numerische Mathematik, Vol. 131 (2015), Iss. 2 P.273

    https://doi.org/10.1007/s00211-014-0688-z [Citations: 11]
  2. The adaptive finite element method based on multi-scale discretizations for eigenvalue problems

    Li, Hao | Yang, Yidu

    Computers & Mathematics with Applications, Vol. 65 (2013), Iss. 7 P.1086

    https://doi.org/10.1016/j.camwa.2013.01.043 [Citations: 13]
  3. An adaptive algorithm based on the shifted inverse iteration for the Steklov eigenvalue problem

    Bi, Hai | Li, Hao | Yang, Yidu

    Applied Numerical Mathematics, Vol. 105 (2016), Iss. P.64

    https://doi.org/10.1016/j.apnum.2016.02.003 [Citations: 13]
  4. Morley type virtual element method for von Kármán equations

    Shylaja, Devika | Kumar, Sarvesh

    Advances in Computational Mathematics, Vol. 50 (2024), Iss. 5

    https://doi.org/10.1007/s10444-024-10158-z [Citations: 0]
  5. A New Linearized Crank‐Nicolson Mixed Element Scheme for the Extended Fisher‐Kolmogorov Equation

    Wang, Jinfeng | Li, Hong | He, Siriguleng | Gao, Wei | Liu, Yang | Du, W.-S. | Ozawa, T.

    The Scientific World Journal, Vol. 2013 (2013), Iss. 1

    https://doi.org/10.1155/2013/756281 [Citations: 3]
  6. A posteriori error analysis for a distributed optimal control problem governed by the von Kármán equations

    Chowdhury, Sudipto | Dond, Asha K. | Nataraj, Neela | Shylaja, Devika

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 56 (2022), Iss. 5 P.1655

    https://doi.org/10.1051/m2an/2022040 [Citations: 1]
  7. A Stable Mixed Element Method for the Biharmonic Equation with First-Order Function Spaces

    Li, Zheng | Zhang, Shuo

    Computational Methods in Applied Mathematics, Vol. 17 (2017), Iss. 4 P.601

    https://doi.org/10.1515/cmam-2017-0002 [Citations: 5]
  8. Lower Bounds for Eigenvalues of the Stokes Operator

    Hu, Jun | Huang, Yunqing

    Advances in Applied Mathematics and Mechanics, Vol. 5 (2013), Iss. 1 P.1

    https://doi.org/10.4208/aamm.11-m11103 [Citations: 6]
  9. Optimal quadratic element on rectangular grids for $$H^1$$ problems

    Zeng, Huilan | Zhang, Chen-Song | Zhang, Shuo

    BIT Numerical Mathematics, Vol. 61 (2021), Iss. 2 P.665

    https://doi.org/10.1007/s10543-020-00821-4 [Citations: 6]
  10. Convergence analysis of the rectangular Morley element scheme for second order problem in arbitrary dimensions

    Meng, XiangYun | Yang, XueQin | Zhang, Shuo

    Science China Mathematics, Vol. 59 (2016), Iss. 11 P.2245

    https://doi.org/10.1007/s11425-015-0471-2 [Citations: 6]
  11. A quadrilateral Morley element for biharmonic equations

    Park, Chunjae | Sheen, Dongwoo

    Numerische Mathematik, Vol. 124 (2013), Iss. 2 P.395

    https://doi.org/10.1007/s00211-013-0517-9 [Citations: 11]
  12. Lower bounds of eigenvalues of the biharmonic operators by the rectangular Morley element methods

    Hu, Jun | Yang, Xueqin

    Numerical Methods for Partial Differential Equations, Vol. 31 (2015), Iss. 5 P.1623

    https://doi.org/10.1002/num.21964 [Citations: 2]
  13. A $$C^0$$ C 0 -Weak Galerkin Finite Element Method for the Biharmonic Equation

    Mu, Lin | Wang, Junping | Ye, Xiu | Zhang, Shangyou

    Journal of Scientific Computing, Vol. 59 (2014), Iss. 2 P.473

    https://doi.org/10.1007/s10915-013-9770-4 [Citations: 60]
  14. Primal hybrid finite element method for fourth order parabolic problems

    Acharya, Sanjib Kumar | Porwal, Kamana

    Applied Numerical Mathematics, Vol. 152 (2020), Iss. P.12

    https://doi.org/10.1016/j.apnum.2020.01.021 [Citations: 4]
  15. Guaranteed Lower Bounds for Eigenvalues of Elliptic Operators

    Hu, Jun | Huang, Yunqing | Ma, Rui

    Journal of Scientific Computing, Vol. 67 (2016), Iss. 3 P.1181

    https://doi.org/10.1007/s10915-015-0126-0 [Citations: 9]
  16. A Lower Bound of the $L^2$ Norm Error Estimate for the Adini Element of the Biharmonic Equation

    Hu, Jun | Shi, Zhongci

    SIAM Journal on Numerical Analysis, Vol. 51 (2013), Iss. 5 P.2651

    https://doi.org/10.1137/130907136 [Citations: 15]
  17. A Locking-Free and Reduction-Free Conforming Finite Element Method for the Reissner-Mindlin Plate on Rectangular Meshes

    Zhang, Shangyou | Zhang, Zhimin

    Communications on Applied Mathematics and Computation, Vol. (2024), Iss.

    https://doi.org/10.1007/s42967-023-00343-0 [Citations: 1]
  18. A Priori and a Posteriori Error Analysis of the Crouzeix–Raviart and Morley FEM with Original and Modified Right-Hand Sides

    Carstensen, Carsten | Nataraj, Neela

    Computational Methods in Applied Mathematics, Vol. 21 (2021), Iss. 2 P.289

    https://doi.org/10.1515/cmam-2021-0029 [Citations: 12]
  19. A Nonconforming Finite Element Approximation for the von Karman equations

    Mallik, Gouranga | Nataraj, Neela

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 50 (2016), Iss. 2 P.433

    https://doi.org/10.1051/m2an/2015052 [Citations: 21]
  20. Development of a P2 element with optimal L2 convergence for biharmonic equation

    Mu, Lin | Ye, Xiu | Zhang, Shangyou

    Numerical Methods for Partial Differential Equations, Vol. 35 (2019), Iss. 4 P.1497

    https://doi.org/10.1002/num.22361 [Citations: 12]