The Ultraconvergence of Eigenvalues for Bi-Quadratic Finite Elements

The Ultraconvergence of Eigenvalues for Bi-Quadratic Finite Elements

Year:    2012

Journal of Computational Mathematics, Vol. 30 (2012), Iss. 5 : pp. 555–564

Abstract

The classical eigenvalue problem of the second-order elliptic operator is approximated with bi-quadratic finite element in this paper. We construct a new superconvergent function recovery operator, from which the $O(h^8|\ln h|^2)$ ultraconvergence of eigenvalue approximation is obtained. Numerical experiments verify the theoretical results.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1203-m3977

Journal of Computational Mathematics, Vol. 30 (2012), Iss. 5 : pp. 555–564

Published online:    2012-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:    Finite element method Eigenvalue recovery Ultraconvergence

  1. Superconvergent Two-Grid Methods for Elliptic Eigenvalue Problems

    Guo, Hailong

    Zhang, Zhimin

    Zhao, Ren

    Journal of Scientific Computing, Vol. 70 (2017), Iss. 1 P.125

    https://doi.org/10.1007/s10915-016-0245-2 [Citations: 14]