Variational Discretization of Parabolic Control Problems in the Presence of Pointwise State Constraints

Variational Discretization of Parabolic Control Problems in the Presence of Pointwise State Constraints

Year:    2011

Journal of Computational Mathematics, Vol. 29 (2011), Iss. 1 : pp. 1–15

Abstract

We consider a parabolic optimal control problem with pointwise state constraints. The optimization problem is approximated by a discrete control problem based on a discretization of the state equation by linear finite elements in space and a discontinuous Galerkin scheme in time. Error bounds for control and state are obtained both in two and three space dimensions. These bounds follow from uniform estimates for the discretization error of the state under natural regularity requirements.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1006-m3213

Journal of Computational Mathematics, Vol. 29 (2011), Iss. 1 : pp. 1–15

Published online:    2011-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    15

Keywords:    Parabolic optimal control problem State constraints Error estimates.

  1. A Priori Error Estimates for Finite Element Discretizations of Parabolic Optimization Problems with Pointwise State Constraints in Time

    Meidner, Dominik | Rannacher, Rolf | Vexler, Boris

    SIAM Journal on Control and Optimization, Vol. 49 (2011), Iss. 5 P.1961

    https://doi.org/10.1137/100793888 [Citations: 45]
  2. Space‐time a posteriori error analysis of finite element approximation for parabolic optimal control problems: A reconstruction approach

    Manohar, Ram | Kumar Sinha, Rajen

    Optimal Control Applications and Methods, Vol. 41 (2020), Iss. 5 P.1543

    https://doi.org/10.1002/oca.2618 [Citations: 1]
  3. A Priori Error Estimates for a Finite Element Discretization of Parabolic Optimization Problems with Pointwise Constraints in Time on Mean Values of the Gradient of the State

    Ludovici, Francesco | Wollner, Winnifried

    SIAM Journal on Control and Optimization, Vol. 53 (2015), Iss. 2 P.745

    https://doi.org/10.1137/140961778 [Citations: 5]
  4. Improved error estimates for semidiscrete finite element solutions of parabolic Dirichlet boundary control problems

    Gong, Wei | Li, Buyang

    IMA Journal of Numerical Analysis, Vol. 40 (2020), Iss. 4 P.2898

    https://doi.org/10.1093/imanum/drz029 [Citations: 10]
  5. Error estimates for parabolic optimal control problems with control and state constraints

    Gong, Wei | Hinze, Michael

    Computational Optimization and Applications, Vol. 56 (2013), Iss. 1 P.131

    https://doi.org/10.1007/s10589-013-9541-z [Citations: 17]
  6. Error estimates for two-scale composite finite element approximations of parabolic equations with measure data in time for convex and nonconvex polygonal domains

    Pramanick, Tamal | Sinha, Rajen Kumar

    Applied Numerical Mathematics, Vol. 143 (2019), Iss. P.112

    https://doi.org/10.1016/j.apnum.2019.03.009 [Citations: 5]
  7. Optimal A Priori Error Estimates of Parabolic Optimal Control Problems with Pointwise Control

    Leykekhman, Dmitriy | Vexler, Boris

    SIAM Journal on Numerical Analysis, Vol. 51 (2013), Iss. 5 P.2797

    https://doi.org/10.1137/120885772 [Citations: 33]
  8. Iterative Method for Solving Parabolic Linear-Quadratic Optimal Control Problem with Constraints on the Time Derivative of the State

    Lapin, A. V. | Romanenko, A. D.

    Lobachevskii Journal of Mathematics, Vol. 39 (2018), Iss. 7 P.916

    https://doi.org/10.1134/S199508021807017X [Citations: 1]
  9. New regularity results and finite element error estimates for a class of parabolic optimal control problems with pointwise state constraints

    Christof, Constantin | Vexler, Boris | Buttazzo, G. | Casas, E. | de Teresa, L. | Glowinski, R. | Leugering, G. | Trélat, E. | Zhang, X.

    ESAIM: Control, Optimisation and Calculus of Variations, Vol. 27 (2021), Iss. P.4

    https://doi.org/10.1051/cocv/2020059 [Citations: 7]
  10. Preconditioned Uzawa-type method for a state constrained parabolic optimal control problem with boundary control

    Lapin, A. | Laitinen, E.

    Lobachevskii Journal of Mathematics, Vol. 37 (2016), Iss. 5 P.561

    https://doi.org/10.1134/S1995080216050085 [Citations: 5]
  11. Temporally Semidiscrete Approximation of a Dirichlet Boundary Control for a Fractional/Normal Evolution Equation with a Final Observation

    Zhou, Qin | Li, Binjie

    Journal of Scientific Computing, Vol. 88 (2021), Iss. 1

    https://doi.org/10.1007/s10915-021-01522-y [Citations: 1]
  12. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's

    Chrysafinos, Konstantinos | N. Karatzas, Efthimios

    Discrete & Continuous Dynamical Systems - B, Vol. 17 (2012), Iss. 5 P.1473

    https://doi.org/10.3934/dcdsb.2012.17.1473 [Citations: 5]
  13. On the explicit scheme with variable time steps for solving the parabolic optimal control problem

    Romanenko, A. D.

    Lobachevskii Journal of Mathematics, Vol. 38 (2017), Iss. 6 P.1156

    https://doi.org/10.1134/S199508021706018X [Citations: 0]
  14. A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control

    Gong, Wei | Hinze, Michael | Zhou, Zhaojie

    SIAM Journal on Control and Optimization, Vol. 52 (2014), Iss. 1 P.97

    https://doi.org/10.1137/110840133 [Citations: 30]
  15. Control of a consumer‐resource agent‐based model using partial differential equation approximation

    Fitzpatrick, Ben G. | Federico, Paula | Kanarek, Andrew | Lenhart, Suzanne

    Optimal Control Applications and Methods, Vol. 43 (2022), Iss. 1 P.178

    https://doi.org/10.1002/oca.2778 [Citations: 0]
  16. Adaptive variational discretization approximation method for parabolic optimal control problems

    Tang, Yuelong | Hua, Yuchun

    Journal of Inequalities and Applications, Vol. 2020 (2020), Iss. 1

    https://doi.org/10.1186/s13660-020-02506-6 [Citations: 0]
  17. A Priori Error Estimates for State-Constrained Semilinear Parabolic Optimal Control Problems

    Ludovici, Francesco | Neitzel, Ira | Wollner, Winnifried

    Journal of Optimization Theory and Applications, Vol. 178 (2018), Iss. 2 P.317

    https://doi.org/10.1007/s10957-018-1311-8 [Citations: 2]
  18. Uzawa-type Iterative Solution Methods for Constrained Saddle Point Problems

    Lapin, A.

    Lobachevskii Journal of Mathematics, Vol. 39 (2018), Iss. 5 P.682

    https://doi.org/10.1134/S1995080218050098 [Citations: 1]
  19. A Priori Error Analysis of the Petrov–Galerkin Crank–Nicolson Scheme for Parabolic Optimal Control Problems

    Meidner, Dominik | Vexler, Boris

    SIAM Journal on Control and Optimization, Vol. 49 (2011), Iss. 5 P.2183

    https://doi.org/10.1137/100809611 [Citations: 35]
  20. A priori error estimates for space–time finite element discretization of semilinear parabolic optimal control problems

    Neitzel, Ira | Vexler, Boris

    Numerische Mathematik, Vol. 120 (2012), Iss. 2 P.345

    https://doi.org/10.1007/s00211-011-0409-9 [Citations: 57]
  21. Convergence and superconvergence of variational discretization for parabolic bilinear optimization problems

    Tang, Yuelong | Hua, Yuchun

    Journal of Inequalities and Applications, Vol. 2019 (2019), Iss. 1

    https://doi.org/10.1186/s13660-019-2195-3 [Citations: 2]
  22. Adaptive Finite Element Approximation for an Elliptic Optimal Control Problem with Both Pointwise and Integral Control Constraints

    Du, Ning | Ge, Liang | Liu, Wenbin

    Journal of Scientific Computing, Vol. 60 (2014), Iss. 1 P.160

    https://doi.org/10.1007/s10915-013-9790-0 [Citations: 7]
  23. Constrained Optimization and Optimal Control for Partial Differential Equations

    Discretization of Optimal Control Problems

    Hinze, Michael | Rösch, Arnd

    2012

    https://doi.org/10.1007/978-3-0348-0133-1_21 [Citations: 12]