Year: 2010
Journal of Computational Mathematics, Vol. 28 (2010), Iss. 2 : pp. 218–234
Abstract
Nonlinear rank-one modification of the symmetric eigenvalue problem arises from eigenvibrations of mechanical structures with elastically attached loads and calculation of the propagation modes in optical fiber. In this paper, we first study the existence and uniqueness of eigenvalues, and then investigate three numerical algorithms, namely Picard iteration, nonlinear Rayleigh quotient iteration and successive linear approximation method (SLAM). The global convergence of the SLAM is proven under some mild assumptions. Numerical examples illustrate that the SLAM is the most robust method.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jcm.2009.10-m1002
Journal of Computational Mathematics, Vol. 28 (2010), Iss. 2 : pp. 218–234
Published online: 2010-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 17
Keywords: Nonlinear eigenvalue problem Rank-one modification Rank-one damping Low-rank damping Picard Successive linear approximation method Nonlinear Rayleigh quotient iteration Safeguard Global convergence.
-
Finite difference approximation of eigenvibrations of a cantilever beam with elastically attached load
Samsonov, A. A. | Korosteleva, D. M. | Solov'ev, P. S. | Solov'ev, S. I.MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2020): Proceeding of the 14th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures, (2020), P.040030
https://doi.org/10.1063/5.0036785 [Citations: 0] -
Quadrature finite element method for the problem on eigenvibrations of a bar with elastic support
Korosteleva, D M | Solov’ev, P S | Solov’ev, S IIOP Conference Series: Materials Science and Engineering, Vol. 709 (2020), Iss. 3 P.033009
https://doi.org/10.1088/1757-899X/709/3/033009 [Citations: 0] -
Eigenvibrations of a bar with two attached loads
Korosteleva, D. M. | Samsonov, A. A. | Solov'ev, P. S. | Solov'ev, S. I.MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2020): Proceeding of the 14th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures, (2020), P.020024
https://doi.org/10.1063/5.0036784 [Citations: 0] -
Mesh Methods for Boundary-Value Problems and Applications
Approximation of Positive Semidefinite Nonlinear Eigenvalue Problems
Solov’ev, Pavel S. | Korosteleva, Diana M. | Solov’ev, Sergey I.2022
https://doi.org/10.1007/978-3-030-87809-2_36 [Citations: 0] -
Finite Element Approximation of the Minimal Eigenvalue and the Corresponding Positive Eigenfunction of a Nonlinear Sturm—Liouville Problem
Korosteleva, D. M. | Solov’ev, P. S. | Solov’ev, S. I.Lobachevskii Journal of Mathematics, Vol. 40 (2019), Iss. 11 P.1959
https://doi.org/10.1134/S1995080219110179 [Citations: 1] -
Investigation of eigenvibrations of a loaded bar
Samsonov, Anton A. | Solov’ev, Sergey I. | Bratan, S. | Gorbatyuk, S. | Leonov, S. | Roshchupkin, S.MATEC Web of Conferences, Vol. 224 (2018), Iss. P.04013
https://doi.org/10.1051/matecconf/201822404013 [Citations: 4] -
Eigenvibrations of a simply supported beam with elastically attached load
Samsonov, Anton A. | Solov’ev, Sergey I. | Solov’ev, Pavel S. | Bratan, S. | Gorbatyuk, S. | Leonov, S. | Roshchupkin, S.MATEC Web of Conferences, Vol. 224 (2018), Iss. P.04012
https://doi.org/10.1051/matecconf/201822404012 [Citations: 4] -
NLEVP
Betcke, Timo | Higham, Nicholas J. | Mehrmann, Volker | Schröder, Christian | Tisseur, FrançoiseACM Transactions on Mathematical Software, Vol. 39 (2013), Iss. 2 P.1
https://doi.org/10.1145/2427023.2427024 [Citations: 171] -
Eigenvibrations of an elastic bar with mechanical resonator
Samsonov, A A | Korosteleva, D M | Solov’ev, S IIOP Conference Series: Materials Science and Engineering, Vol. 709 (2020), Iss. 3 P.033008
https://doi.org/10.1088/1757-899X/709/3/033008 [Citations: 2] -
Eigenvibrations of a beam with elastically attached load
Solov’ev, S. I.
Lobachevskii Journal of Mathematics, Vol. 37 (2016), Iss. 5 P.597
https://doi.org/10.1134/S1995080216050115 [Citations: 31] -
The bounds of the smallest and largest eigenvalues for rank-one modification of the Hermitian eigenvalue problem
Cheng, GuangHui | Luo, XiaoXue | Li, LiangApplied Mathematics Letters, Vol. 25 (2012), Iss. 9 P.1191
https://doi.org/10.1016/j.aml.2012.02.036 [Citations: 5] -
Error of the Finite Element Approximation for a Differential Eigenvalue Problem with Nonlinear Dependence on the Spectral Parameter
Samsonov, A. A. | Solov’ev, P. S. | Solov’ev, S. I. | Korosteleva, D. M.Lobachevskii Journal of Mathematics, Vol. 40 (2019), Iss. 11 P.2000
https://doi.org/10.1134/S199508021911026X [Citations: 0] -
Information Computing and Applications
Reduced 4th-Order Eigenvalue Problem
Wang, Shu-hong | Zhang, Bao-cai | Gu, Zhu-quan2011
https://doi.org/10.1007/978-3-642-25255-6_21 [Citations: 0] -
The bounds of the eigenvalues for rank-one modification of Hermitian matrix
Cheng, Guanghui | Song, Zhida | Yang, Jianfeng | Si, JiaNumerical Linear Algebra with Applications, Vol. 21 (2014), Iss. 1 P.98
https://doi.org/10.1002/nla.1867 [Citations: 2] -
Canonical Concordance Correlation Analysis
Lipovetsky, Stan
Mathematics, Vol. 11 (2022), Iss. 1 P.99
https://doi.org/10.3390/math11010099 [Citations: 1] -
Sensitivity computations in higher order continuation methods
Charpentier, Isabelle | Lampoh, KomlanviApplied Mathematical Modelling, Vol. 40 (2016), Iss. 4 P.3365
https://doi.org/10.1016/j.apm.2015.10.033 [Citations: 4] -
Non-linear buckling analysis of tapered curved composite plates based on a simplified methodology
Akhlaque-E-Rasul, Shaikh | Ganesan, RajamohanComposites Part B: Engineering, Vol. 43 (2012), Iss. 2 P.797
https://doi.org/10.1016/j.compositesb.2011.11.010 [Citations: 9] -
A Nonlinear QR Algorithm for Banded Nonlinear Eigenvalue Problems
Garrett, C. Kristopher | Bai, Zhaojun | Li, Ren-CangACM Transactions on Mathematical Software, Vol. 43 (2017), Iss. 1 P.1
https://doi.org/10.1145/2870628 [Citations: 4]