Year: 2010
Journal of Computational Mathematics, Vol. 28 (2010), Iss. 2 : pp. 235–260
Abstract
The Hermitian and skew-Hermitian splitting (HSS) method is an unconditionally convergent iteration method for solving large sparse non-Hermitian positive definite system of linear equations. By making use of the HSS iteration as the inner solver for the Newton method, we establish a class of Newton-HSS methods for solving large sparse systems of nonlinear equations with positive definite Jacobian matrices at the solution points. For this class of inexact Newton methods, two types of local convergence theorems are proved under proper conditions, and numerical results are given to examine their feasibility and effectiveness. In addition, the advantages of the Newton-HSS methods over the Newton-USOR, the Newton-GMRES and the Newton-GCG methods are shown through solving systems of nonlinear equations arising from the finite difference discretization of a two-dimensional convection-diffusion equation perturbed by a nonlinear term. The numerical implementations also show that as preconditioners for the Newton-GMRES and the Newton-GCG methods the HSS iteration outperforms the USOR iteration in both computing time and iteration step.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jcm.2009.10-m2836
Journal of Computational Mathematics, Vol. 28 (2010), Iss. 2 : pp. 235–260
Published online: 2010-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 26
Keywords: Systems of nonlinear equations HSS iteration method Newton method Local convergence.