Estimator Competition for Poisson Problems

Estimator Competition for Poisson Problems

Year:    2010

Journal of Computational Mathematics, Vol. 28 (2010), Iss. 3 : pp. 309–330

Abstract

We compare 13 different a posteriori error estimators for the Poisson problem with lowest-order finite element discretization. Residual-based error estimators compete with a wide range of averaging estimators and estimators based on local problems. Among our five benchmark problems we also look on two examples with discontinuous isotropic diffusion and their impact on the performance of the estimators. (Supported by DFG Research Center MATHEON.)

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.2009.10-m1015

Journal of Computational Mathematics, Vol. 28 (2010), Iss. 3 : pp. 309–330

Published online:    2010-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    22

Keywords:    Finite element methods A posteriori error estimators.

  1. Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory

    A Story on Adaptive Finite Element Computations for Elliptic Eigenvalue Problems

    Międlar, Agnieszka

    2015

    https://doi.org/10.1007/978-3-319-15260-8_9 [Citations: 1]
  2. An a posteriori error estimator for the spectral fractional power of the Laplacian

    Bulle, Raphaël | Barrera, Olga | Bordas, Stéphane P.A. | Chouly, Franz | Hale, Jack S.

    Computer Methods in Applied Mechanics and Engineering, Vol. 407 (2023), Iss. P.115943

    https://doi.org/10.1016/j.cma.2023.115943 [Citations: 2]
  3. BEM-based Finite Element Approaches on Polytopal Meshes

    Adaptive BEM-Based Finite Element Method

    Weißer, Steffen

    2019

    https://doi.org/10.1007/978-3-030-20961-2_5 [Citations: 0]
  4. Finite Element Approximation of Boundary Value Problems

    A Posteriori Error Estimation

    Chouly, Franz

    2025

    https://doi.org/10.1007/978-3-031-72530-2_7 [Citations: 0]
  5. Error Control, Adaptive Discretizations, and Applications, Part 1

    Algebraic error in numerical PDEs and its estimation

    Papež, Jan

    2024

    https://doi.org/10.1016/bs.aams.2024.04.002 [Citations: 0]
  6. Numerical comparison of three a posteriori error estimators for nonconforming finite element method

    Achchab, B. | Agouzal, A. | Bouihat, K. | Majdoubi, A.

    Moroccan Journal of Pure and Applied Analysis, Vol. 9 (2023), Iss. 1 P.1

    https://doi.org/10.2478/mjpaa-2023-0001 [Citations: 0]
  7. A new 3D equilibrated residual method improving accuracy and efficiency of flux‐free error estimates

    Parés, Núria | Díez, Pedro

    International Journal for Numerical Methods in Engineering, Vol. 120 (2019), Iss. 4 P.391

    https://doi.org/10.1002/nme.6141 [Citations: 1]
  8. Interplay between discretization and algebraic computation in adaptive numerical solutionof elliptic PDE problems

    Arioli, Mario | Liesen, Jörg | Miçdlar, Agnieszka | Strakoš, Zdeněk

    GAMM-Mitteilungen, Vol. 36 (2013), Iss. 1 P.102

    https://doi.org/10.1002/gamm.201310006 [Citations: 26]
  9. Equilibration a Posteriori Error Estimation for Convection–Diffusion–Reaction Problems

    Eigel, M. | Merdon, C.

    Journal of Scientific Computing, Vol. 67 (2016), Iss. 2 P.747

    https://doi.org/10.1007/s10915-015-0108-2 [Citations: 4]
  10. A posteriori goal-oriented bounds for the Poisson problem using potential and equilibrated flux reconstructions: Application to the hybridizable discontinuous Galerkin method

    Parés, N. | Nguyen, N.C. | Díez, P. | Peraire, J.

    Computer Methods in Applied Mechanics and Engineering, Vol. 386 (2021), Iss. P.114088

    https://doi.org/10.1016/j.cma.2021.114088 [Citations: 1]
  11. Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem

    Carstensen, C. | Merdon, C.

    Journal of Computational and Applied Mathematics, Vol. 249 (2013), Iss. P.74

    https://doi.org/10.1016/j.cam.2012.12.021 [Citations: 20]
  12. A posteriori error estimator competition for conforming obstacle problems

    Carstensen, C. | Merdon, C.

    Numerical Methods for Partial Differential Equations, Vol. 29 (2013), Iss. 2 P.667

    https://doi.org/10.1002/num.21728 [Citations: 6]
  13. Using a Digital Twin of an Electrical Stimulation Device to Monitor and Control the Electrical Stimulation of Cells in vitro

    Zimmermann, Julius | Budde, Kai | Arbeiter, Nils | Molina, Francia | Storch, Alexander | Uhrmacher, Adelinde M. | van Rienen, Ursula

    Frontiers in Bioengineering and Biotechnology, Vol. 9 (2021), Iss.

    https://doi.org/10.3389/fbioe.2021.765516 [Citations: 22]
  14. Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications

    Aspects of Guaranteed Error Control in CPDEs

    Carstensen, C. | Merdon, C. | Neumann, J.

    2013

    https://doi.org/10.1007/978-1-4614-7172-1_6 [Citations: 0]
  15. Effective postprocessing for equilibration a posteriori error estimators

    Carstensen, C. | Merdon, C.

    Numerische Mathematik, Vol. 123 (2013), Iss. 3 P.425

    https://doi.org/10.1007/s00211-012-0494-4 [Citations: 12]
  16. Axioms of adaptivity

    Carstensen, C. | Feischl, M. | Page, M. | Praetorius, D.

    Computers & Mathematics with Applications, Vol. 67 (2014), Iss. 6 P.1195

    https://doi.org/10.1016/j.camwa.2013.12.003 [Citations: 164]